Citation: | XU Xiao-jian, YANG Rui, JI Yong-bo, ZHANG Xin-yu, JIANG Lei, LI Kun. Review on key technologies of hydrogen fuel cell powered vessels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 47-67. doi: 10.19818/j.cnki.1671-1637.2022.04.004 |
[1] |
International Marine Organization. Fourth IMOGHG study 2020 executive summary[R]. London: International Marine Organization, 2021.
|
[2] |
胡琼, 周伟新, 刁峰. IMO船舶温室气体减排初步战略解读[J]. 中国造船, 2019, 60(1): 195-201. doi: 10.3969/j.issn.1000-4882.2019.01.019
HU Qiong, ZHOU Wei-xin, DIAO Feng. Interpretation of initial IMO strategy on reduction of GHG emissions from ships[J]. Shipbuilding of China, 2019, 60(1): 195-201. (in Chinese) doi: 10.3969/j.issn.1000-4882.2019.01.019
|
[3] |
BRYNOLF S, MAGNUSSON M, FRIDELL E, et al. Compliance possibilities for the future ECA regulations through the use of abatement technologies or change of fuels[J]. Transportation Research Part D: Transport and Environment, 2014, 28: 6-18. doi: 10.1016/j.trd.2013.12.001
|
[4] |
王思佳. 2020年, 航运减排竞赛年[J]. 中国船检, 2019(12): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ201912008.htm
WANG Si-jia. 2020, the year of racing for shipping emission reduction[J]. China Ship Survey, 2019(12): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ201912008.htm
|
[5] |
张永伟, 张真, 苗乃乾, 等. 中国氢能产业发展报2020[R]. 北京: 中国电动汽车百人会, 2020.
ZHANG Yong-wei, ZHANG Zhen, MIAO Nai-qian, et al. Report on hydrogen energy industry development of China 2020[R]. Beijing: China EV 100, 2020. (in Chinese)
|
[6] |
符冠云, 赵吉诗, 龚娟, 等. 2019年国内外氢能发展形势回顾及展望[J]. 中国能源, 2020, 42(3): 30-33. doi: 10.3969/j.issn.1003-2355.2020.03.006
FU Guan-yun, ZHAO Ji-shi, GONG Juan, et al. Review and prospect on hydrogen energy development at home and abroad in 2019[J]. Energy of China, 2020, 42(3): 30-33. (in Chinese) doi: 10.3969/j.issn.1003-2355.2020.03.006
|
[7] |
马宇坤, 张勤杰, 赵俊杰. 船舶行业"氢"装上阵之路有多远[J]. 船舶物资与市场, 2019(3): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-CBWZ201903011.htm
MA Yu-kun, ZHANG Qin-jie, ZHAO Jun-jie. How far is the way to use hydrogen in shipping industry[J]. Marine Equipment/Materials and Marketing, 2019(3): 14-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBWZ201903011.htm
|
[8] |
朱子文. MOFs储氢应用于船舶燃料电池电力推进系统的研究[D]. 厦门: 集美大学, 2019.
ZHU Zi-wen. Research on the application of MOFs as hydrogen storage materials in fuel cell electric propulsion system for ships[D]. Xiamen: Jimei University, 2019. (in Chinese)
|
[9] |
于全虎. 氢能和燃料电池及其船舶应用进展[J]. 船舶, 2020, 31(5): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202005013.htm
YU Quan-hu. Hydrogen, fuel cells and their application on ship[J]. Ship and Boat, 2020, 31(5): 69-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202005013.htm
|
[10] |
徐自亮, 余英, 李力. 氢燃料电池应用进展[J]. 中国基础科学, 2018, 20(2): 7-17. doi: 10.3969/j.issn.1009-2412.2018.02.002
XU Zi-liang, YU Ying, LI Li. Latest progress of hydrogen fuel cell's applications[J]. China Basic Science, 2018, 20(2): 7-17. (in Chinese) doi: 10.3969/j.issn.1009-2412.2018.02.002
|
[11] |
PRATT J W, KLEBANOFF L E. Optimization of zero emission hydrogen fuel cell ferry design, with comparisons to the SF-BREEZE[R]. Albuquerque: Sandia National Laboratories, 2018.
|
[12] |
American Bureau of Shipping. Guide for fuel cell power systems for marine and offshore applications[R]. New York: American Bureau of Shipping, 2019.
|
[13] |
ALVESTAD L, BERGE K. Handbook for hydrogen-fuelled vessels[R]. Oslo: DNV, 2021.
|
[14] |
罗肖锋, 吴顺平, 雷伟, 等. 船舶能源低碳发展趋势及路径[J]. 中国远洋海运, 2021(3): 46-51. doi: 10.3969/j.issn.1673-6664.2021.03.013
LUO Xiao-feng, WU Shun-ping, LEI Wei, et al. Low-carbon development trend and path of ship energy[J]. Maritime China, 2021(3): 46-51. (in Chinese) doi: 10.3969/j.issn.1673-6664.2021.03.013
|
[15] |
王思佳. CCS助力氢能上船提速[J]. 中国船检, 2020, 245(9): 15-18. doi: 10.3969/j.issn.1009-2005.2020.09.007
WANG Si-jia. CCS promotes the application of hydrogen on ships[J]. China Ship Survey, 2020, 245(9): 15-18. (in Chinese) doi: 10.3969/j.issn.1009-2005.2020.09.007
|
[16] |
黄兴, 丁天威, 赵洪辉, 等. 车用燃料电池系统氢安全控制综述[J]. 汽车文摘, 2019, 519(4): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ201904003.htm
HUANG Xing, DING Tian-wei, ZHAO Hong-hui, et al. A review of hydrogen safety control for automotive fuel cell systems[J]. Automotive Digest, 2019, 519(4): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ201904003.htm
|
[17] |
马秋玉, 赵子亮, 赵洪辉, 等. 燃料电池行业标准现状综述[J]. 汽车文摘, 2020(1): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ202001005.htm
MA Qiu-yu, ZHAO Zi-liang, ZHAO Hong-hui, et al. Overview on the present situation of fuel cell industry standards[J]. Automotive Digest, 2020(1): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ202001005.htm
|
[18] |
WHITE C M, STEEPER R R, LUTZ A E. The hydrogen-fueled internal combustion engine: a technical review[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1292-1305. doi: 10.1016/j.ijhydene.2005.12.001
|
[19] |
温术来. 燃料电池的研究现状及进展[J]. 现代化工, 2019, 39(7): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201907014.htm
WEN Shu-lai. Research status and progress of fuel cell[J]. Modern Chemical Industry, 2019, 39(7): 66-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201907014.htm
|
[20] |
程一步. 氢燃料电池技术应用现状及发展趋势分析[J]. 石油石化绿色低碳, 2018, 3(2): 5-13. doi: 10.3969/j.issn.2095-0942.2018.02.002
CHENG Yi-bu. Application status and development trend analysis of hydrogen fuel cell technology[J]. Green Petroleumand Petrochemicals, 2018, 3(2): 5-13. (in Chinese) doi: 10.3969/j.issn.2095-0942.2018.02.002
|
[21] |
侯明, 衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学, 2012, 18(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201201002.htm
HOU Ming, YI Bao-lian. Progress and perspective of fuel cell technology[J]. Journal of Electrochemistry, 2012, 18(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201201002.htm
|
[22] |
冯娟. 船用动力氢燃料电池性能优化研究[D]. 镇江: 江苏科技大学, 2018.
FENG Juan. Performance optimization of marine hydrogen fuel cell[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018. (in Chinese)
|
[23] |
TRONSTAD T, ÅSTRAND H H, HAUGOM G P, et al. Study on the use of fuel cells in shipping[R]. Oslo: DNV, 2017.
|
[24] |
XING H, STUART C, SPENCE S, et al. Fuel cell power systems for maritime applications: progress and perspectives[J]. Sustainability, 2021, 13(3): 1213. doi: 10.3390/su13031213
|
[25] |
SHAO Min-hua, PELES A, SHOEMAKER K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reactionactivity[J]. Nano Letters, 2011, 11(9): 3714-3719. doi: 10.1021/nl2017459
|
[26] |
LIU Sheng-chu, LI Shang, WANG Ru-yi, et al. Preparation of high performance and ultra-low platinum loading membrane electrode assembly for PEMFC commercial application[J]. Journal of the Electrochemical Society, 2019, 166(16): 1308-1313. doi: 10.1149/2.0151916jes
|
[27] |
ERCOLANO G, CAVALIERE S, ROZIōRE J, et al. Recent developments in electrocatalyst design thrifting noble metals in fuel cells[J]. Current Opinion in Electrochemistry, 2018, 9: 271-277. doi: 10.1016/j.coelec.2018.05.019
|
[28] |
何大平, 木士春. 质子交换膜燃料电池铂电催化剂的稳定策略[J]. 电化学, 2018, 24(6): 655-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201806008.htm
HE Da-ping, MU Shi-chun. Stabilization strategies of Pt catalysts for proton exchange membrane fuel cells[J]. Journal of Electrochemistry, 2018, 24(6): 655-663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201806008.htm
|
[29] |
侯明, 邵志刚, 俞红梅, 等. 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1): 137-150. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202001015.htm
HOU Ming, SHAO Zhi-gang, YU Hong-mei, et al. Review of hot topics on hydrogen fuel cell in 2019[J]. Science and Technology Review, 2020, 38(1): 137-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202001015.htm
|
[30] |
毛韬博, 栾伟玲, 付青青. 聚苯胺基涂层在质子交换膜燃料电池金属双极板上的应用进展[J]. 化工进展, 2021, 40(7): 3826-3836. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202107027.htm
MAO Tao-bo, LUAN Wei-ling, FU Qing-qing. Recent progress on polyaniline-based coatings on bipolar plates of proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3826-3836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202107027.htm
|
[31] |
王科. 质子交换膜燃料电池双极板流场的研究[D]. 南京: 南京航空航天大学, 2007.
WANG Ke. Research on flow field on bipolar plates for proton exchange membrane fuel cell[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese)
|
[32] |
刘海超. 质子交换膜燃料电池流道设计与流体管理[D]. 北京: 北京化工大学, 2018.
LIU Hai-chao. Design of flow channel and research on fluid management in proton exchange membrane fuel cells[D]. Beijing: Beijing University of Chemical Technology, 2018. (in Chinese)
|
[33] |
王伟, 吴旨玉, 董宗玉, 等. 硅橡胶密封垫的应力弛豫特性[J]. 润滑与密封, 2004, 29(2): 27-28, 30. doi: 10.3969/j.issn.0254-0150.2004.02.011
WANG Wei, WU Zhi-yu, DONG Zong-yu, et al. Stress relaxation properties of the silicone rubber gasket[J]. Lubrication Engineering, 2004, 29(2): 27-28, 30. (in Chinese) doi: 10.3969/j.issn.0254-0150.2004.02.011
|
[34] |
CUI T, CHAO Y J, CHEN X M, et al. Effect of water on life prediction of liquid silicone rubber seals in polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2011, 196(22): 9536-9543. doi: 10.1016/j.jpowsour.2011.07.066
|
[35] |
DAI Wei, WANG Hai-jiang, YUAN Xiao-zi, et al. A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(23): 9461-9478. doi: 10.1016/j.ijhydene.2009.09.017
|
[36] |
VAN BIERT L, GODJEVAC M, VISSER K, et al. A review of fuel cell systems for maritime applications[J]. Journal of Power Sources, 2016, 327(30): 345-364.
|
[37] |
刘易明, 王甫, 王珺, 等. 燃料电池船舶应用形式及其关键技术[J]. 船舶工程, 2021, 43(3): 18-26, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202103004.htm
LIU Yi-ming, WANG Fu, WANG Jun, et al. Application form and its key technology of fuel cell ship[J]. Ship Engineering, 2021, 43(3): 18-26, 33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202103004.htm
|
[38] |
CHOI C H, YU S J, HAN I S, et al. Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3591-3599. doi: 10.1016/j.ijhydene.2015.12.186
|
[39] |
李鸿瑞, 熊良胜, 邵诗逸. 直流电力推进系统在小水线面双体科考船上的应用[J]. 舰船科学技术, 2017, 39(8): 85-90. doi: 10.3404/j.issn.1672-7649.2017.08.018
LI Hong-rui, XIONG Liang-sheng, SHAO Shi-yi. Application and research of DC electric propulsion to the SWATH scientific research vessel[J]. Ship Science and Technology, 2017, 39(8): 85-90. (in Chinese) doi: 10.3404/j.issn.1672-7649.2017.08.018
|
[40] |
侯慧, 甘铭, 吴细秀, 等. 混合动力船舶能量管理研究综述[J]. 中国舰船研究, 2021, 16(5): 216-229. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202105025.htm
HOU Hui, GAN Ming, WU Xi-xiu, et al. Review of hybrid ship energy management[J]. Chinese Journal of Ship Research, 2021, 16(5): 216-229. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202105025.htm
|
[41] |
ZHU Li-si, HAN Jin-gang, PENG Dong-kai, et al. Fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid ship[C]//IEEE. 2014 First International Conference on Green Energy. New York: IEEE, 2014: 107-112.
|
[42] |
潘钊, 商蕾, 高海波, 等. 燃料电池混合动力船舶复合储能系统与能量管理策略优化[J]. 大连海事大学学报, 2021, 47(3): 79-85. doi: 10.3969/j.issn.1671-7031.2021.03.012
PAN Zhao, SHANG Lei, GAO Hai-bo, et al. Optimization of composite energy storage system and energy management strategy for fuel cell ships[J]. Journal of Dalian Maritime University, 2021, 47(3): 79-85. (in Chinese) doi: 10.3969/j.issn.1671-7031.2021.03.012
|
[43] |
杨庆勇. 氢燃料在船舶上的应用分析[J]. 青岛远洋船员职业学院学报, 2020, 41(4): 41-44, 59. doi: 10.3969/j.issn.2095-3747.2020.04.010
YANG Qing-yong. On the application of hydrogen energy in ships[J]. Journal of Qingdao Ocean Shipping Mariners College, 2020, 41(4): 41-44, 59. (in Chinese) doi: 10.3969/j.issn.2095-3747.2020.04.010
|
[44] |
刘福水, 郝利君, HEITZ P B. 氢燃料内燃机技术现状与发展展望[J]. 汽车工程, 2006, 28(7): 621-625. doi: 10.3321/j.issn:1000-680X.2006.07.004
LIU Fu-shui, HAO Li-jun, HEITZ P B. Technology status and development prospect of hydrogen fuel internal combustion engine[J]. Automotive Engineering, 2006, 28(7): 621-625. (in Chinese) doi: 10.3321/j.issn:1000-680X.2006.07.004
|
[45] |
SARTBAEVA A, KUZNETSOV V L, WELLS S A, et al. Hydrogen nexus in a sustainable energy future[J]. Energyand Environmental Science, 2008, 1(1): 79-85. doi: 10.1039/b810104n
|
[46] |
葛玉振, 林丽利, 姚思宇, 等. 适用于氢气低温制备与高效存储的催化新体系[J]. 科学通报, 2018, 63(21): 2140-2147. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201821007.htm
GE Yu-zhen, LIN Li-li, YAO Si-yu, et al. Catalysis for efficient low-temperature hydrogen production and storage[J]. Chinese Science Bulletin, 2018, 63(21): 2140-2147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201821007.htm
|
[47] |
俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202102020.htm
YU Hong-mei, SHAO Zhi-gang, HOU Ming, et al. Hydrogen production by water electrolysis: progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202102020.htm
|
[48] |
符冠云. 氢能在我国能源转型中的地位和作用[J]. 中国煤炭, 2019, 45(10): 15-21. doi: 10.3969/j.issn.1006-530X.2019.10.004
FU Guan-yun. The status and role of hydrogen energy in China's energy transformation[J]. China Coal, 2019, 45(10): 15-21. (in Chinese) doi: 10.3969/j.issn.1006-530X.2019.10.004
|
[49] |
郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202106001.htm
GUO Bo-wen, LUO Dan, ZHOU Hong-jun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202106001.htm
|
[50] |
杜泽学, 慕旭宏. 水电解技术发展及在绿氢生产中的应用[J]. 石油炼制与化工, 2021, 52(2): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH202102032.htm
DU Ze-xue, MU Xu-hong. Development of water electrolysis technology and its application in green hydrogen production[J]. Petroleum Processing and Petrochemicals, 2021, 52(2): 102-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH202102032.htm
|
[51] |
宋时莉, 李黎明, 朱艳兵, 等. Nafion质子交换膜退化研究进展[J]. 山东化工, 2017, 46(17): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201717024.htm
SONG Shi-li, LI li-ming, ZHU Yan-bing, et al. Study progress about degradation of nafion proton exchange membrane[J]. Shandong Chemical Industry, 2017, 46(17): 59-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201717024.htm
|
[52] |
范芷萱, 俞红梅, 姜广, 等. PEM水电解池低成本阳极钛纤维毡扩散层研究[J]. 电源技术, 2020, 44(7): 933-936. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS202007001.htm
FAN Zhi-xuan, YU Hong-mei, JIANG Guang, et al. A low-cost Ti felt anode gas diffusion layer for PEM water electrolysis[J]. Chinese Journal of Power Sources, 2020, 44(7): 933-936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS202007001.htm
|
[53] |
LETTENMEIER P, WANG R, ABOUATALLAH R, et al. Low-cost and durable bipolar plates for proton exchange membrane electrolyzers[J]. Scientific Reports, 2017, 7: 44035.
|
[54] |
VAN HOECKE L, LAFFINEUR L, CAMPE R, et al. Challenges in the use of hydrogen for maritime applications[J]. Energy and Environmental Science, 2021, 14: 815-843.
|
[55] |
ESPOSITO D V. Membraneless electrolyzers for low-cost hydrogen production in a renewable energy future[J]. Joule, 2017, 1: 651-658.
|
[56] |
李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3): 446-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202103002.htm
LI Zheng, ZHANG Rui, SUN He-xu, et al. Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 446-462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202103002.htm
|
[57] |
高金良, 袁泽明, 尚宏伟, 等. 氢储存技术及其储能应用研究进展[J]. 金属功能材料, 2016, 23(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201601001.htm
GAO Jin-liang, YUAN Ze-ming, SHANG Hong-wei, et al. Research progress on storage technology and stored energy application of hydrogen[J]. Metallic Functional Materials, 2016, 23(1): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201601001.htm
|
[58] |
李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201804011.htm
LI Lu-ling, FAN Shuan-shi, CHEN Qiu-xiong, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201804011.htm
|
[59] |
郑津洋, 开方明, 刘仲强, 等. 轻质高压储氢容器[J]. 化工学报, 2004(S1): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2004S1026.htm
ZHENG Jin-yang, KAI Fang-ming, LIU Zhong-qiang, et al. Lightweight high-pressure hydrogen tank[J]. Journal of Chemical Industry and Engineering, 2004, 55(S1): 130-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2004S1026.htm
|
[60] |
欧训民. 氢能制取和储存技术研究发展综述[J]. 能源研究与信息, 2009, 25(1): 1-4, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-NYYX200901002.htm
OU Xun-min. A review on the research and development of hydrogen production and storage technologies[J]. Energy Research and Information Technology, 2009, 25(1): 1-4, 16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYYX200901002.htm
|
[61] |
杨妙梁. 世界燃料电池车发展动向(三)——丰田燃料电池车开发与制氢、储氢技术概况[J]. 汽车与配件, 2005(5): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-QCPJ200505014.htm
YANG Miao-liang. Development trend of fuel cell vehicles in the world (3) —Toyota fuel cell vehicles development, and hydrogen production and storage technology[J]. Automobile and Parts, 2005(5): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCPJ200505014.htm
|
[62] |
郭志钒, 巨永林. 低温液氢储存的现状及存在问题[J]. 低温与超导, 2019, 47(6): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201906004.htm
GUO Zhi-fan, JU Yong-lin. Status and problems of cryogenic liquid hydrogen storage[J]. Cryogenics and Superconductivity, 2019, 47(6): 21-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201906004.htm
|
[63] |
HODOSHIMA S, ARAI H, TAKAIWA S, et al. Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle[J]. International Journal of Hydrogen Energy, 2003, 28(11): 1255-1262.
|
[64] |
双慧丽. 全氢化有机液体储氢物低温催化脱氢研究[D]. 杭州: 浙江大学, 2020.
SHUANG Hui-li. Study of dehydrogenation of hydrogen-rich liauid organic hydrogen carriers at low temperature[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
|
[65] |
汪云华, 王靖坤, 赵家春, 等. 固体储氢材料的研究进展[J]. 材料导报, 2011, 25(9): 120-124. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201109028.htm
WANG Yun-hua, WANG Jing-kun, ZHAO Jia-chun, et al. Research progress of solid-state hydrogen storage materials[J]. Materials Reports, 2011, 25(9): 120-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201109028.htm
|
[66] |
卢国俭, 周仕学, 姜瑶瑶, 等. 金属合金及碳材料储氢的研究进展[J]. 材料导报, 2007, 21(3): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200703024.htm
LU Guo-jian, ZHOU Shi-xue, JIANG Yao-yao, et al. Overview of alloy and carbon material for hydrogen storage[J]. Materials Reports, 2007, 21(3): 86-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200703024.htm
|
[67] |
REN J W, MUSYOKA N M, LANGMI H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review[J]. International Journal of Hydrogen Energy, 2017, 42(1): 289-311.
|
[68] |
陈俊, 陈秋雄, 陈运文, 等. 水合物储能技术研究现状[J]. 储能科学与技术, 2015, 4(2): 131-140. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201502008.htm
CHEN Jun, CHEN Qiu-xiong, CHEN Yun-wen, et al. Current status of energy storage using hydrates[J]. Energy Storage Science and Technology, 2015, 4(2): 131-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201502008.htm
|
[69] |
KAMIYA S, NISHIMURA M, HARADA E. Study on introduction of CO2 free energy to Japan with liquid hydrogen[J]. Physics Procedia, 2015, 67: 11-19.
|
[70] |
DE STEFANO M, ROCOURT X, SOCHET I, et al. Hydrogen dispersion in a closed environment[J]. International Journal of Hydrogen Energy, 2019, 44: 9031-9040.
|
[71] |
李云浩, 喻源, 张庆武. 车库内氢气扩散和分布状态的数值模拟[J]. 安全与环境学报, 2017, 17(5): 1884-1889. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705052.htm
LI Yun-hao, YU Yuan, ZHANG Qing-wu. Numerical simulation for the hydrogen dispersion and distribution behaviors in the garage context[J]. Journal of Safety and Environment, 2017, 17(5): 1884-1889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705052.htm
|
[72] |
刘延雷, 郑津洋, 徐平, 等. 环境温度对高压储氢罐泄漏扩散影响的数值模拟[J]. 工程热物理学报, 2008, 29(5): 770-772. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200805013.htm
LIU Yan-lei, ZHENG Jin-yang, XU Ping, et al. Numerical simulation on the influnce of environment temperature on the leakage and diffusion of high pressured hydrogen due to storage tank failure[J]. Journal of Engineering Thermophysics, 2008, 29(5): 770-772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200805013.htm
|
[73] |
徐平, 刘鹏飞, 刘延雷, 等. 高压储氢罐不同位置泄漏扩散的数值模拟研究[J]. 高校化学工程学报, 2008, 22(6): 921-926.
XU Ping, LIU Peng-fei, LIU Yan-lei, et al. Numerical simulation on the leakage and diffusion of hydrogen due to high pressured storage tank failure at different positions[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6): 921-926. (in Chinese)
|
[74] |
郑津洋, 刘延雷, 徐平, 等. 障碍物对高压储氢罐泄漏扩散影响的数值模拟[J]. 浙江大学学报(工学版), 2008, 42(12): 2177-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200812024.htm
ZHENG Jin-yang, LIU Yan-lei, XU Ping, et al. Numerical simulation of obstacle influence on leakage and diffusion of hydrogen due to high-pressure storage tank failure[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(12): 2177-2180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200812024.htm
|
[75] |
李峰. 燃料电池客船氢气系统设计与氢泄漏数值模拟研究[D]. 武汉: 武汉理工大学, 2018.
LI Feng. Study on the design of hydrogen system and numerical simulation of hydrogen leakatge in fuel cell passenger ship[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese)
|
[76] |
BRENNAN S, MOLKOV V. Pressure peaking phenomenon for indoor hydrogen releases[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18530-18541.
|
[77] |
FUSTER B, HOUSSIN-AGBOMSON D, JALLAIS S, et al. Guidelines and recommendations for indoor use of fuel cells and hydrogen systems[J]. International Journal of Hydrogen Energy, 2017, 42: 7600-7607.
|
[78] |
LIU Yuan-liang, LIU Zhan, WEI Jian-jian, et al. Spread characteristics of hydrogen vapor cloud for liquid hydrogen spill under different source conditions[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4606-4613.
|
[79] |
LIU Yuan-liang, WEI Jian-jian, LEI Gang, et al. Spread of hydrogen vapor cloud during continuous liquid hydrogen spills[J]. Cryogenics, 2019, 103(3): 102975.
|
[80] |
LIU Yuan-liang, WEI Jian-jian, LEI Gang, et al. Modeling the development of hydrogen vapor cloud considering the presence of air humidity[J]. International Journal of Hydrogen Energy, 2019, 44(3): 2059-2068.
|
[81] |
SHAO Xiang-yu, PU Liang, LI Qiang, et al. Numerical investigation of flammable cloud on liquid hydrogen spill under various weather conditions[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5249-5260.
|
[82] |
LIU Yuan-liang, LIU Zhan, WEI Jian-jian, et al. Evaluation and prediction of the safe distance in liquid hydrogen spill accident[J]. Process Safety and Environmental Protection, 2021, 146: 1-8.
|
[83] |
SATO Y, IWABUCHI H, GROETHE M, et al. Experiments on hydrogen deflagration[J]. Journal of Power Sources, 2006, 159(1): 144-148.
|
[84] |
SCHEFER R W, GROETHE M, HOUF W G, et al. Experimental evaluation of barrier walls for risk reduction of unintended hydrogen releases[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1590-1606.
|
[85] |
SCHIAVETTI M, CARCASSI M N. Experimental tests of inhomogeneous hydrogen deflagrations in the presence of obstacles[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12455-12463.
|
[86] |
DOROFEEV S B. Evaluation of safety distances related to unconfined hydrogen explosions[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2118-2124.
|
[87] |
XIAO Hua-hua, DUAN Qiang-ling, SUN Jin-hua. Premixed flame propagation in hydrogen explosions[J]. Renewable and Sustainable Energy Reviews, 2018, 81(2): 1988-2001.
|
[88] |
LIANG Zhe, GARDNER L, CLOUTHIER T, et al. Hydrogen deflagrations in stratified flat layers in the large-scale vented combustion test facility[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12533-12544.
|
[89] |
LI Xin-feng, MA Xian-feng, ZHANG Jin, et al. Review of hydrogen embrittlement in metals: hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention[J]. Acta Metallurgica Sinica(English Letters), 2020, 33: 759-773.
|
[90] |
尹谢平, 李斌, 高增梁, 等. 高压气瓶用34CrMo4钢抗氢脆性能及影响因素[J]. 中国特种设备安全, 2018, 34(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLA201801008.htm
YIN Xie-ping, LI Bin, GAO Zeng-liang, et al. Hydrogen embrittlement resistant and influence factors of 34CrMo4 steel in high pressure cylinders[J]. China Special Equipment Safety, 2018, 34(1): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLA201801008.htm
|
[91] |
李志勇, 潘相敏, 谢佳, 等. 加氢站风险评价研究现状与进展[J]. 科技导报, 2009, 27(16): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200916040.htm
LI Zhi-yong, PAN Xiang-min, XIE Jia, et al. Risk assessment on hydrogen refueling stations[J]. Science and Technology Guide, 2009, 27(16): 93-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200916040.htm
|
[92] |
NILSEN S, ANDERSEN H S, HAUGOM G P, et al. Risk assessments of hydrogen refuelling station concepts based on onsite production[R]. Porsgrunn: Norsk Hydro ASA, 2003.
|
[93] |
张陈诗. 燃料电池汽车加氢站风险评价研究[D]. 重庆: 重庆大学, 2019.
ZHANG Chen-shi. Research on risk evaluation of fuel cell vehicle hydrogen refueling station[D]. Chongqing: Chongqing University, 2019. (in Chinese)
|
[94] |
DADASHZADEH M, KASHKAROV S, MAKAROV D, et al. Risk assessment methodology for onboard hydrogen storage[J]. International Journal of Hydrogen Energy, 2018, 43(12): 6462-6475.
|
[95] |
李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201507026.htm
LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(7): 1389-1394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201507026.htm
|
[96] |
RIGAS F, SKLAVOUNOS S. Evaluation of hazards associated with hydrogen storage facilities[J]. International Journal of Hydrogen Energy, 2005, 30(13/14): 1501-1510.
|