Citation: | LI Qing-yong, WANG Jian-zhu, ZHU Ye-zhou, HUANG Qi-long, PENG Wen-juan, WANG Sheng-chun, DAI Peng. Abnormal fastener detection model based on deep convolutional autoencoder with structural similarity[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 186-195. doi: 10.19818/j.cnki.1671-1637.2022.04.014 |
[1] |
ZHAN Zhi-kun, SUN Hao, YU Xiao-dong, et al. Wireless rail fastener looseness detection based on MEMS accelerometer and vibration entropy[J]. IEEE Sensors Journal, 2020, 20(6): 3226-3234. doi: 10.1109/JSEN.2019.2955378
|
[2] |
YUAN Zhan-dong, ZHU Sheng-yang, YUAN Xuan-cheng, et al. Vibration-based damage detection of rail fastener clip using convolutional neural network: experiment and simulation[J]. Engineering Failure Analysis, 2021, 119: 104906. doi: 10.1016/j.engfailanal.2020.104906
|
[3] |
CHANDRAN P, RANTATALO M, ODELIUS J, et al. Train-based differential eddy current sensor system for rail fastener detection[J]. Measurement Science and Technology, 2019, 30(12): 125105. doi: 10.1088/1361-6501/ab2b24
|
[4] |
WEI Xiu-kun, YANG Zi-ming, LIU Yu-xin, et al. Railway track fastener defect detection based on image processing and deep learning techniques: a comparative study[J]. Engineering Applications of Artificial Intelligence, 2019, 80: 66-81. doi: 10.1016/j.engappai.2019.01.008
|
[5] |
JING Guo-qing, QIN Xuan-yang, WANG Hao-yu, et al. Developments, challenges, and perspectives of railway inspection robots[J]. Automation in Construction, 2022, 138: 104242. doi: 10.1016/j.autcon.2022.104242
|
[6] |
张辉, 宋雅男, 王耀南, 等. 钢轨缺陷无损检测与评估技术综述[J]. 仪器仪表学报, 2019, 40(2): 11-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201902002.htm
ZHANG Hui, SONG Ya-nan, WANG Yao-nan, et al. Review of rail defect non-destructive testing and evaluation[J]. Chinese Journal of Scientific Instrument, 2019, 40(2): 11-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201902002.htm
|
[7] |
王平, 盛宏威, 冀凯伦, 等. 高速载运设施的无损检测技术应用和发展趋势[J]. 数据采集与处理, 2020, 35(2): 195-209. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ202002002.htm
WANG Ping, SHENG Hong-wei, JI Kai-lun, et al. Application and development trend of non-destructive testing technology for high-speed transportation facilities[J]. Journal of Data Acquisition and Processing, 2020, 35(2): 195-209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ202002002.htm
|
[8] |
刘甲甲, 熊鹰, 李柏林, 等. 基于计算机视觉的轨道扣件缺陷自动检测算法研究[J]. 铁道学报, 2016, 38(8): 73-80. doi: 10.3969/j.issn.1001-8360.2016.08.011
LIU Jia-jia, XIONG Ying, LI Bai-lin, et al. Research on automatic inspection algorithm for railway fastener defects based on computer vision[J]. Journal of the China Railway Society, 2016, 38(8): 73-80. (in Chinese) doi: 10.3969/j.issn.1001-8360.2016.08.011
|
[9] |
FAN Hong, COSMAN P C, HOU Yun, et al. High-speed railway fastener detection based on a line local binary pattern[J]. IEEE Signal Processing Letters, 2018, 25(6): 788-792. doi: 10.1109/LSP.2018.2825947
|
[10] |
GIBERT X, PATEL V M, CHELLAPPA R. Robust fastener detection for autonomous visual railway track inspection[C]// IEEE. 2015 IEEE Winter Conference on Applications of Computer Vision. New York: IEEE, 2015: 694-701.
|
[11] |
代先星, 丁世海, 阳恩慧, 等. 铁路扣件弹条伤损自动检测系统研发与验证[J]. 铁道科学与工程学报, 2018, 15(10): 2478-2486. doi: 10.19713/j.cnki.43-1423/u.2018.10.004
DAI Xian-xing, DING Shi-hai, YANG En-hui, et al. Development and verification of automatic inspection system for high-speed railway fastener[J]. Journal of Railway Science and Engineering, 2018, 15(10): 2478-2486. (in Chinese) doi: 10.19713/j.cnki.43-1423/u.2018.10.004
|
[12] |
FENG Hao, JIANG Zhi-guo, XIE Feng-ying, et al. Automatic f astener classification and defect detection in vision-based railway inspection systems[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(4): 877-888. doi: 10.1109/TIM.2013.2283741
|
[13] |
戴鹏, 王胜春, 杜馨瑜, 等. 基于半监督深度学习的无砟轨道扣件缺陷图像识别方法[J]. 中国铁道科学, 2018, 39(4): 43-49. doi: 10.3969/j.issn.1001-4632.2018.04.07
DAI Peng, WANG Sheng-chun, DU Xin-yu, et al. Image recognition method for the fastener defect of ballastless track based on semi-supervised deep learning[J]. China Railway Science, 2018, 39(4): 43-49. (in Chinese) doi: 10.3969/j.issn.1001-4632.2018.04.07
|
[14] |
DONG Bang-yi, LI Qing-yong, WANG Jian-zhu, et al. An end-to-end abnormal fastener detection method based on data synthesis[C]//IEEE. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence. New York: IEEE, 2019: 149-156.
|
[15] |
MA Ning-ning, ZHANG Xiang-yu, ZHENG Hai-tao, et al. ShuffleNet v2: Practical guidelines for efficient CNN architecture design[C]//Springer. 15th European Conference on Computer Vision. Berlin: Springer, 2018: 116-131.
|
[16] |
LIU Jun-bo, HUANG Ya-ping, ZOU Qi, et al. Learning visual similarity for inspecting defective railway fasteners[J]. IEEE Sensors Journal, 2019, 19(16): 6844-6857. doi: 10.1109/JSEN.2019.2911015
|
[17] |
韦若禹, 李舒婷, 吴松荣, 等. 基于改进YOLO V3算法的轨道扣件缺陷检测[J]. 铁道标准设计, 2020, 64(12): 30-36. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202012008.htm
WEI Ruo-yu, LI Shu-ting, WU Song-rong, et al. Defect detection of track fastener based on improved YOLO V3 algorithm[J]. Railway Standard Design, 2020, 64(12): 30-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202012008.htm
|
[18] |
REDMON J, FARHADI A. YOLO v3: an incremental improvement[J]. arXiv, 2018, https://doi.org/10.48550/arXiv.1804.02767
|
[19] |
HSIEH C C, LIN Y W, TSAI L H, et al. Offline deep-learning-based defective track fastener detection and inspection system[J]. Sensors and Materials, 2020, 32(10): 3429-3442. doi: 10.18494/SAM.2020.2921
|
[20] |
ZHAN You, DAI Xian-xing, YANG En-hui, et al. Convolutional neural network for detecting railway fastener defects using a developed 3D laser system[J]. International Journal of Rail Transportation, 2021, 9(5): 424-444. doi: 10.1080/23248378.2020.1825128
|
[21] |
CUI Hao, LI Jian, HU Qing-wu, et al. Real-time inspection system for ballast railway fasteners based on point cloud deep learning[J]. IEEE Access, 2020, 8: 61604-61614. doi: 10.1109/ACCESS.2019.2961686
|
[22] |
RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536.
|
[23] |
MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//ICML. 2013 International Conference on Machine Learning Workshop on Deep Learning for Audio, Speech and Language Processing. New York: ICML, 2013: 1-6.
|
[24] |
KALMAN B L, KWASNY S C. Why tanh: choosing a sigmoidal function[C]//IEEE. 1992 International Joint Conference on Neural Networks. New York: IEEE, 1992: 578-581.
|
[25] |
WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
|
[26] |
BERGMANN P, LOWE S, FAUSER M, et al. Improving unsupervised defect segmentation by applying structural similarity to autoencoders[C]//Springer. 2019 International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. Berlin: Springer, 2019: 372-380.
|
[27] |
KINGMA D P, BA J L. Adam: a method for stochastic optimization[C]//ICLR. 2015 International Conference on Learning Representations. La Jolla: ICLR, 2015: 1-15.
|
[28] |
IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]// ICML. 2015 International Conference on Machine Learning. New York: ICML, 2015: 448-456.
|
[29] |
COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27.
|
[30] |
RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//ICML. 2018 International Conference on Machine Learning. New York: ICML, 2018: 4393-4402.
|
[31] |
KOMODAKIS N, GIDARIS S. Unsupervised representation learning by predicting image rotations[C]//ICLR. 2018 International Conference on Learning Representations. La Jolla: ICLR, 2018: 1-16.
|
[32] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]//IEEE. 2016 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
|
[33] |
PUKELSHEIM F. The three sigma rule[J]. The American Statistician, 1994, 48(2): 88-91.
|