Volume 22 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
ZHUANG Yi-zhou, SONG Kun-sheng, SONG Yong-qing, CHEN Guo-dong, HUANG Fu-yun, CHEN Liang. Quasi-static test on H-shaped steel-RC stepped pile-soil interaction of integral bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 145-162. doi: 10.19818/j.cnki.1671-1637.2022.05.008
Citation: ZHUANG Yi-zhou, SONG Kun-sheng, SONG Yong-qing, CHEN Guo-dong, HUANG Fu-yun, CHEN Liang. Quasi-static test on H-shaped steel-RC stepped pile-soil interaction of integral bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 145-162. doi: 10.19818/j.cnki.1671-1637.2022.05.008

Quasi-static test on H-shaped steel-RC stepped pile-soil interaction of integral bridge

doi: 10.19818/j.cnki.1671-1637.2022.05.008
Funds:

National Natural Science Foundation of China 51778147

More Information
  • Author Bio:

    ZHUANG Yi-zhou(1964-), male, professor, PhD, yizhouzhuang@qq.com

  • Received Date: 2022-04-17
  • Publish Date: 2022-10-25
  • On the basis of H-shaped steel-RC stepped pile model tests, the quasi-static tests of 2 H-shaped steel-RC stepped piles (HS-RC-0.25, HS-RC-0.50) and an H-shaped steel (HS) pile under the low cyclic repeated loading were carried out. A horizontal displacement load was applied on the pile top, and the strain and soil pressure gauges were embedded, a specially designed test method for the horizontal displacement of the pile body was adopted, and the failure characteristics of the HS-RC stepped pile, the horizontal displacement and strain of the pile body along the pile depth, skeleton curve, and hysteretic behavior curve were obtained. The horizontal displacement abilities of the stepped pile top under free and fixed conditions were compared and analyzed by OpenSEES. The reduction coefficient and conversion coefficient of the horizontal bearing capacity of the stepped pile were obtained, and the calculated value obtained by the reduction coefficient and test value of horizontal bearing capacity of the model pile were compared. Test results show that the elastic deformation range of the pile top of the HS pile is 2-25 mm, and the pile has strong horizontal deformation ability, positive bearing capacity, full hysteresis loop during the whole loading process, and excellent energy consumption effect. The stiffness ratio has no significant effect on the failure mode of the stepped pile. The upper steel pile of the stepped pile has no apparent buckling failure, and the concrete at the variable section is seriously peeled off with the same failure position. With the increase in the stiffness ratio, the yield displacement and yield load of the stepped pile-soil system increase. Compared with that of HS-RC-0.50, the yield displacement of HS-RC-0.25 decreases by 29.15%, and the strain mutation of the pile body decreases. The hysteresis loop of the stepped pile is pinched at the initial loading stage due to slip and becomes spindle-shaped at the later loading stage. The energy consumption effect is positive, and the energy consumption of HS-RC-0.50 during the whole loading process is 25.4% more than that of HS-RC-0.25, which shows an excellent horizontal deformation ability. Compared with the experimental value, the calculation error of HS-RC-0.25 is -9.68%, while the calculation error of HS-RC-0.50 is -2.47%. The HS-RC stepped pile can meet the horizontal deformation requirements of the integral abutment bridge pile foundation, and the reduction coefficient can be used to better calculate the stepped pile's horizontal bearing capacity characteristic value.

     

  • loading
  • [1]
    HUANG Fu-yun, SHAN Yu-lin, LUO Xiao-ye, et al. Displacement-based seismic design criteria of concrete piles in integral abutment jointless bridges[J]. China Journal of Highway and Transport, 2021, 34(5): 99-109. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.05.010
    [2]
    WHITE H, PÉTURSSON H, COLLIN P. Integral abutment bridges: the European way[J]. Practice Periodical on Structural Design and Construction, 2010, 15(3): 201-208. doi: 10.1061/(ASCE)SC.1943-5576.0000053
    [3]
    KUNIN J, ALAMPALLI S. Integral abutment bridges: current practice in United States and Canada[J]. Journal of Performance of Constructed Facilities, 2000, 14(3): 104-111. doi: 10.1061/(ASCE)0887-3828(2000)14:3(104)
    [4]
    AL-ANI M, MURASHEV A, PALERMO A, et al. Criteria and guidance for the design of integral bridges[J]. Proceedings of the Institution of Civil Engineers Bridge Engineering, 2018, 171(3): 143-154. doi: 10.1680/jbren.17.00014
    [5]
    LAFAVE J M, BRAMBILA G, KODE U, et al. Field behavior of integral abutment bridges under thermal loading[J]. Journal of Bridge Engineering, 2021, 26(4): 04021013. doi: 10.1061/(ASCE)BE.1943-5592.0001677
    [6]
    DUNKER K F, LIU D. Foundations for integral abutments[J]. Practice Periodical on Structural Design and Construction, 2007, 12(1): 22-30. doi: 10.1061/(ASCE)1084-0680(2007)12:1(22)
    [7]
    LUO Xiao-ye, CHEN Bao-chun, HUANG Fu-yun, et al. Mechanical property of integral bridge supported by different types of pile foundations[J]. Journal of Architecture and Civil Engineering, 2020, 37(5): 151-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202005016.htm
    [8]
    KONG B, CAI C S, ZHANG Y. Parametric study of an integral abutment bridge supported by prestressed precast concrete piles[J]. Engineering Structures, 2016(120): 37-48.
    [9]
    BAKROON M, DARYAEI R, AUBRAM D, et al. Numerical evaluation of buckling in steel pipe piles during vibratory installation[J]. Soil Dynamics and Earthquake Engineering, 2019, 122: 327-336. doi: 10.1016/j.soildyn.2018.08.003
    [10]
    FAR N E, MALEKI S, BARGHIAN M. Design of integral abutment bridges for combined thermal and seismic loads[J]. Earthquakes and Structures, 2015, 9(2): 415-430. doi: 10.12989/eas.2015.9.2.415
    [11]
    DICLELI M. Analytical prediction of thermal displacement capacity of integral bridges built on sand[J]. Advances in Structural Engineering, 2005, 8(1): 15-30. doi: 10.1260/1369433053749661
    [12]
    KAMEL M R, BENAK J V, TADROS M K, et al. Prestressed concrete piles in jointless bridges[J]. PCI Journal, 1996, 41(2): 56-67. doi: 10.15554/pcij.03011996.56.67
    [13]
    YU Tian-lai, LI Bo-yan, LIU Yang, et al. Detailed structural design of integral abutment bridge[J]. Journal of China and Foreign Highway, 2011, 31(2): 193-195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201102049.htm
    [14]
    RAZMI J, AGGOUR M S, LADANI L. Performance of piles in integral abutment bridges under thermo-mechanical cyclic loads[J]. Bridge Structures, 2014, 10(1): 11-17. doi: 10.3233/BRS-140066
    [15]
    VERMA M, MISHRA S S. Temperature-driven fatigue life of reinforced concrete integral bridge pile considering nonlinear soil-structure interaction[J]. Structural Concrete, 2020, 21(6): 2565-2583. doi: 10.1002/suco.202000049
    [16]
    YIN Shi-ping, JING Lei, LYU Heng-lin. Experimental analysis of bond between corroded steel bar and concrete confined with textile-reinforced concrete[J]. Journal of Materials in Civil Engineering, 2019, 31(10): 04019208. doi: 10.1061/(ASCE)MT.1943-5533.0002856
    [17]
    HONG Jin-xiang, PENG Da-wen. Research on the loaded property of integral abutment bridges with flexible piles[J]. China Journal of Highway and Transport, 2002, 15(4): 43-48. (in Chinese) doi: 10.3321/j.issn:1001-7372.2002.04.013
    [18]
    ISMAEL N F. Behavior of step tapered bored piles in sand under static lateral loading[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(5): 669-676. doi: 10.1061/(ASCE)GT.1943-5606.0000265
    [19]
    WU Ze-jun, GENG Da-xin, FANG Tao. Model test on horizontal load of variable cross-section pile[J]. Railway Engineering, 2011, 51(8): 103-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201108034.htm
    [20]
    LIU Xin-rong, FANG Tao, GENG Da-xin, et al. Model test on lateral bearing behaviors of large diameter pile with variable cross section[J]. China Journal of Highway and Transport, 2013, 26(6): 80-86, 190. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201306013.htm
    [21]
    ZOU Gui-hua, HU Wei, LIU Shun-kai, et al. Research on horizontal bearing characters of variable cross-sectional pile[J]. Science and Technology and Engineering, 2016, 16(33): 108-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201633019.htm
    [22]
    LI Bao-jian, LI Guang-fan, HU Wei, et al. Experimental study of field bearing capacity of material composite piles[J]. Rock and Soil Mechanics, 2015, 36(S2): 629-632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2091.htm
    [23]
    CHEN Bao-chun, CHEN Guo-dong, SU Jia-zhan, et al. Trial-design study on integral abutment bridge by using UHPC-RC stagewise piles[J]. Journal of Architecture and Civil Engineering, 2018, 35(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201801002.htm
    [24]
    HUANG Fu-yun, ZHUANG Yi-zhou, FU Cui, et al. Review on the seismic performance and simplified design method of jointless bridge[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(5): 15-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201505003.htm
    [25]
    ZHAO Qiu-hong, QI Zhao-yang, AN Ze-yu, et al. Parametric analysis on seismic behavior of integral abutment steel bridge considering SSI[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 35-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201805005.htm
    [26]
    HUANG Fu-yun, WU Sui-wen, LUO Xiao-ye, et al. Pseudo-static low cycle test on the mechanical behavior of PHC pipe piles with consideration of soil-pile interaction[J]. Engineering Structures, 2018, 171: 992-1006.
    [27]
    ZHAO Jin-gang, DU Bin, ZHAN Yu-lin. Applicability of Mander model in OpenSees for simulation of hysteretic behavior of reinforced concrete column[J]. Journal of Lanzhou University of Technology, 2017, 43(5): 127-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201705022.htm
    [28]
    LIU Ya-ming, SI Bing-jun, HE Fu. Nonlinear numerical analysis model for single pile-soil interaction[J]. Journal of Institute of Disaster Prevention, 2018, 20(2): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZJS201802001.htm
    [29]
    LI Zeng-feng. Quasi static test research of concrete pile-soil interaction based on displacement[D]. Fuzhou: Fuzhou University, 2018. (in Chinese)
    [30]
    LIU Ming-qi. Experimental study on UHPC-RC segmental pile-soil interaction of integral abutment bridge[D]. Fuzhou: Fuzhou University, 2020. (in Chinese)

Catalog

    Article Metrics

    Article views (671) PDF downloads(40) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return