Volume 22 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
QIAO Wen-jing, YANG Fan, HU Qi-han, ZHANG Hao, JIAO Xue-feng. Experiment on mechanical property degradation of Q345 steel after strong corrosion[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 231-246. doi: 10.19818/j.cnki.1671-1637.2022.05.014
Citation: QIAO Wen-jing, YANG Fan, HU Qi-han, ZHANG Hao, JIAO Xue-feng. Experiment on mechanical property degradation of Q345 steel after strong corrosion[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 231-246. doi: 10.19818/j.cnki.1671-1637.2022.05.014

Experiment on mechanical property degradation of Q345 steel after strong corrosion

doi: 10.19818/j.cnki.1671-1637.2022.05.014
Funds:

National Key Research and Development Program of China 2018YFD1100701

Natural Science Foundation of Shaanxi Province 2021JM-434

Natural Science Foundation of Shaanxi Province 2021JQ-648

Science and Technology Planning Project of Weiyang District in Xi'an City 202019

More Information
  • Author Bio:

    QIAO Wen-jing(1981-), female, associate professor, PhD, qiaowenjing@xatu.edu.cn

  • Received Date: 2022-03-28
  • Publish Date: 2022-10-25
  • The influences of surface morphology and corrosion time of Q345 steel after strong corrosion on its mechanical property degradation were systematically studied. A rapid corrosion method based on the industrial hydrochloric acid with a concentration of 36% at room temperature was adopted, and nine groups of steel specimens with the corrosion time of 0, 1, 2, 4, 8, 12, 24, 48, and 72 h respectively were designed. A 3D non-contact laser scanner and an electron microscope were adopted to scan the corroded steel, and the width and height of the largest corrosion pit and the thicknesses of corroded specimens were measured. The influence coefficient of the largest corrosion pit was calculated. A tensile test was carried out, and the mechanical property degradation mechanism of Q345 steel after strong corrosion was explained according to the scanning morphology and microstructure morphology. The corrosion kinetics curve and constitutive relation model of Q345 steel after strong corrosion by the industrial hydrochloric acid with a concentration of 36% were established at room temperature, and the mechanical property degradation law of Q345 steel after strong corrosion was revealed. Research results show that as the corrosion time increases, the corrosion kinetics curve of Q345 steel demonstrates the change law of corrosion rate. When the corrosion time is less than 1 h, the influence coefficient of the largest corrosion pit increases obviously, and the nominal yield strength, nominal tensile strength, nominal elastic modulus and elongation of the steel degrade significantly, reaching 3.00%, 0.69%, 1.99%, and 4.88% of the uncorroded steel respectively. When the corrosion time exceeds 12 h, the influence coefficient of the largest corrosion pit increases slowly, and the nominal yield strength, nominal tensile strength, nominal elastic modulus and elongation of steel degrade slowly, reaching 7.58%, 4.02%, 10.27%, and 26.64% of the uncorroded steel respectively. The change of the yield-strength ratio is slight as the influence coefficient of the largest corrosion pit and the corrosion time increase. In the stress-strain constitutive relation curves of the corroded specimens, as the corrosion time increases, the yield platform of steel gradually shortens or even disappears, and the steel changes from ductile failure to brittle failure.

     

  • loading
  • [1]
    ZHANG Gang, ZHAO Xiao-cui, LU Ze-lei, et al. Review and discussion on fire behavior of bridge girders[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 422-446. doi: 10.1016/j.jtte.2022.05.002
    [2]
    张岗, 贺拴海, 宋超杰, 等. 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34(1): 1-10. doi: 10.3969/j.issn.1001-7372.2021.01.001

    ZHANG Gang, HE Shuan-hai, SONG Chao-jie, et al. Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.01.001
    [3]
    王春生, 张静雯, 段兰, 等. 长寿命高性能耐候钢桥研究进展与工程应用[J]. 交通运输工程学报, 2020, 20(1): 1-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001004.htm

    WANG Chun-sheng, ZHANG Jing-wen, DUAN Lan, et al. Research progress and engineering application of long lasting high performance weathering steel bridges[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 1-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001004.htm
    [4]
    郑凯锋, 张宇, 衡俊霖, 等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202003001.htm

    ZHENG Kai-feng, ZHANG Yu, HENG Jun-lin, et al. High strength weathering steel and its application and prospect in bridge engineering[J]. Journal of Harbin Institute of Institute of Technology, 2020, 52(3): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202003001.htm
    [5]
    史炜洲, 童乐为, 陈以一, 等. 腐蚀对钢材和钢梁受力性能影响的试验研究[J]. 建筑结构学报, 2012, 33(7): 53-60.

    SHI Wei-zhou, TONG Le-wei, CHEN Yi-yi, et al. Experimental study on influence of corrosion on behavior of steel material and steel beams[J]. Journal of Building Structures, 2012, 33(7): 53-60. (in Chinese)
    [6]
    邓露, 宁莎丽, 王维. 腐蚀环境下钢-混凝土组合梁桥疲劳寿命计算[J]. 公路工程, 2019, 44(2): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201902018.htm

    DENG Lu, NING Sha-li, WANG Wei. Calculation of the fatigue life of steel-concrete composite girder bridges under corrosive environment[J]. Highway Engineering, 2019, 44(2): 97-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201902018.htm
    [7]
    朱劲松, 郭晓宇, 亢景付, 等. 耐候桥梁钢腐蚀力学行为研究及其应用进展[J]. 中国公路学报, 2019, 32(5): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905002.htm

    ZHU Jin-song, GUO Xiao-yu, KANG Jing-fu, et al. Research on corrosion behavior, mechanical property and application of weathering steel in bridges[J]. China Journal of Highway and Transport, 2019, 32(5): 1-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905002.htm
    [8]
    张浩. 强腐作用下桥梁钢力学性能退化试验研究[D]. 西安: 西安工业大学, 2022.

    ZHANG Hao. Experimental study on degradation of mechanical properties of bridge steel under strong corrosion[D]. Xi'an: Xi'an Technological University, 2022. (in Chinese)
    [9]
    彭建新, 阳逸鸣, 唐皇, 等. 锈蚀钢筋蚀坑特征分析及其对力学性能的影响[J]. 长沙理工大学学报(自然科学版), 2015, 12(3): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201503008.htm

    PENG Jian-xin, YANG Yi-ming, TANG Huang, et al. Characteristics of pitting corrosion for steel reinforcement and its effect on mechanical properties[J]. Journal of Changsha University of Science and technology (Natural Science Edition), 2015, 12(3): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201503008.htm
    [10]
    徐善华, 张宗星, 秦广冲. 考虑腐蚀钢板表面形貌的三维逆向重建及力学性能退化分析[J]. 材料科学与工程学报, 2017, 35(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201701016.htm

    XU Shan-hua, ZHANG Zong-xing, QIN Guang-chong. Three- dimensional reconstruction and degradation of mechanical properties based on real surface of corrosion steel[J]. Journal of Materials Science and Engineering, 2017, 35(1): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201701016.htm
    [11]
    徐善华, 张宗星, 何羽玲, 等. 考虑蚀坑影响的腐蚀钢板力学性能退化试验研究[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(2): 164-171. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201702002.htm

    XU Shan-hua, ZHANG Zong-xing, HE Yu-ling, et al. Experimental study on monotonic tensile behavior of corroded steel in neutral salt spray environment[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2017, 49(2): 164-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201702002.htm
    [12]
    彭建新, 张伟, 阳逸鸣, 等. 腐蚀对高性能钢Q550E力学指标影响的试验研究[J]. 公路交通科技, 2018, 35(10): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201810008.htm

    PENG Jian-xin, ZHANG Wei, YANG Yi-ming, et al. Experimental study on influence of corrosion on mechanical index of high performance steel Q550E[J]. Journal of Highway and Transportation Research and Development, 2018, 35(10): 56-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201810008.htm
    [13]
    QIN Guang-chong, XU Shan-hua, YAO Dao-qiang, et al. Study on the degradation of mechanical properties of corroded steel plates based on surface topography[J]. Journal of Constructional Steel Research, 2016, 125: 205-217.
    [14]
    KHEDMATI M R, NOURI Z H M E. Analytical simulation of nonlinear elastic-plastic average stress-average strain relationships for un-corroded/both-sides randomly corroded steel plates under uniaxial compression[J]. Thin-Walled Structures, 2015, 86: 132-141.
    [15]
    TOHIDI S, SHARIFI Y. Load-carrying capacity of locally corroded steel plate girder ends using artificial neural network[J]. Thin-Walled Structures, 2016, 100: 48-61.
    [16]
    BAJRACHARYA S, SASAKI E, TAMURA H. Numerical study on corrosion profile estimation of a corroded steel plate using eddy current[J]. Structure and Infrastructure Engineering, 2019, 15(9): 1151-1164.
    [17]
    KARINA C N, CHUN P J, OKUBO K. Tensile strength prediction of corroded steel plates by using machine learning approach[J]. Steel and Composite Structures, 2017, 25: 635-641.
    [18]
    RAIPUT A, PAIK J K. Effects of naturally-progressed corrosion on the chemical and mechanical properties of structural steels[J]. Structures, 2021, 29: 2120-2138.
    [19]
    王友德, 徐善华, 李晗, 等. 一般大气环境下锈蚀结构钢表面特征与随机模型[J]. 金属学报, 2020, 56(2): 148-160. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202002003.htm

    WANG You-de, XU Shan-hua, LI Han, et al. Surface characteristics and stochastic model of corroded structural steel under general atmospheric environment[J]. Acta Metallurgica Sinica, 2020, 56(2): 148-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202002003.htm
    [20]
    WANG You-de, XU Shan-hua, WANG Hao, et al. Predicting the residual strength and deformability of corroded steel plate based on the corrosion morphology[J]. Construction and Building Materials, 2017, 152: 777-793.
    [21]
    XU Shan-hua, ZHANG Hai-jiang, WANG You-de. Estimation of the properties of corroded steel plates exposed to salt-spray atmosphere[J]. Corrosion Engineering Science and Technology, 2019, 54(5): 431-443.
    [22]
    KAINUMA S, JEONG Y S, AHN J H. Investigation on the stress concentration effect at the corroded surface achieved by atmospheric exposure test[J]. Materials Science and Engineering: A, 2014, 602: 89-97.
    [23]
    YU Qiang, DONG Chao-fang, FANG Yue-hua, et al. Atmospheric corrosion of Q235 carbon steel and Q450 weathering steel in Turpan, China[J]. Journal of Iron and Steel Research International, 2016, 23(10): 1061-1070.
    [24]
    RAJPUT A, PAIK J K. Effects of naturally-progressed corrosion on the chemical and mechanical properties of structural steels[J]. Structures, 2021, 29: 2120-2138.
    [25]
    乔文靖, 朱浩云, 张岗, 等. 强腐作用下钢板组合梁的力学性能及失效机理[J]. 长安大学学报(自然科学版), 2021, 41(2): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202102005.htm

    QIAO Wen-jing, ZHU Hao-yun, ZHANG Gang, et al. Mechanical properties and failure mechanism of steel plate composite beams under strong corrosion[J]. Journal of Chang'an University (Natural Science Edition), 2021, 41(2): 46-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202102005.htm
    [26]
    CHEN Jun-ling, LI Jin-wei, LI Zhe-xu. Experiment research on rate-dependent constitutive model of Q420[J]. Construction and Building Materials, 2017, 153: 816-823.
    [27]
    WOLOSZY K K, GARBATOV Y. Random field modelling of mechanical behaviour of corroded thin steel plate specimens[J]. Engineering Structures, 2020, 212: 1-12.
    [28]
    QIAO Wen-jing, ZHANG Hao, YANG Fan, et al. Ductility degradation of weathering steel Q345 after exposure to hydrochloric-acid corrosion dependent on pitting damage[J]. Journal of Materials in Civil Engineering, 2022, 34(11): 04022304.
    [29]
    O'BRIEN C, MCBRIDE A, ZAGHI A E, et al. Mechanical behavior of stainless steel fiber-reinforced composites exposed to accelerated corrosion[J]. Materials, 2017, DOI: 10.3390/ma10070772.
    [30]
    YANG F, YUAN M M, QIAO W J, et al. Mechanical investigation of carbon steel under strong corrosion effected by corrosion pits[J]. Mathematical Problems in Engineering, 2022, 1719196: 1-18.
    [31]
    REN Song-bo, GU Ying, KONG Chao, et al. Effects of the corrosion pitting parameters on the mechanical properties of corroded steel[J]. Construction and Building Materials, 2021, 272: 121941.
    [32]
    冯大帅. 中性盐雾腐蚀后Q345B钢材疲劳性能研究[D]. 徐州: 中国矿业大学, 2019.

    FENG Da-shuai. Study on fatigue properties of Q345B steel after neutral salt spray corrosion[D]. Xuzhou: China University of Mining and Technology, 2019. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (660) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return