Citation: | QIAO Wen-jing, YANG Fan, HU Qi-han, ZHANG Hao, JIAO Xue-feng. Experiment on mechanical property degradation of Q345 steel after strong corrosion[J]. Journal of Traffic and Transportation Engineering, 2022, 22(5): 231-246. doi: 10.19818/j.cnki.1671-1637.2022.05.014 |
[1] |
ZHANG Gang, ZHAO Xiao-cui, LU Ze-lei, et al. Review and discussion on fire behavior of bridge girders[J]. Journal of Traffic and Transportation Engineering (English Edition), 2022, 9(3): 422-446. doi: 10.1016/j.jtte.2022.05.002
|
[2] |
张岗, 贺拴海, 宋超杰, 等. 钢结构桥梁抗火研究综述[J]. 中国公路学报, 2021, 34(1): 1-10. doi: 10.3969/j.issn.1001-7372.2021.01.001
ZHANG Gang, HE Shuan-hai, SONG Chao-jie, et al. Review on fire resistance of steel structural bridge girders[J]. China Journal of Highway and Transport, 2021, 34(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.01.001
|
[3] |
王春生, 张静雯, 段兰, 等. 长寿命高性能耐候钢桥研究进展与工程应用[J]. 交通运输工程学报, 2020, 20(1): 1-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001004.htm
WANG Chun-sheng, ZHANG Jing-wen, DUAN Lan, et al. Research progress and engineering application of long lasting high performance weathering steel bridges[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 1-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001004.htm
|
[4] |
郑凯锋, 张宇, 衡俊霖, 等. 高强度耐候钢及其在桥梁中的应用与前景[J]. 哈尔滨工业大学学报, 2020, 52(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202003001.htm
ZHENG Kai-feng, ZHANG Yu, HENG Jun-lin, et al. High strength weathering steel and its application and prospect in bridge engineering[J]. Journal of Harbin Institute of Institute of Technology, 2020, 52(3): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202003001.htm
|
[5] |
史炜洲, 童乐为, 陈以一, 等. 腐蚀对钢材和钢梁受力性能影响的试验研究[J]. 建筑结构学报, 2012, 33(7): 53-60.
SHI Wei-zhou, TONG Le-wei, CHEN Yi-yi, et al. Experimental study on influence of corrosion on behavior of steel material and steel beams[J]. Journal of Building Structures, 2012, 33(7): 53-60. (in Chinese)
|
[6] |
邓露, 宁莎丽, 王维. 腐蚀环境下钢-混凝土组合梁桥疲劳寿命计算[J]. 公路工程, 2019, 44(2): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201902018.htm
DENG Lu, NING Sha-li, WANG Wei. Calculation of the fatigue life of steel-concrete composite girder bridges under corrosive environment[J]. Highway Engineering, 2019, 44(2): 97-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201902018.htm
|
[7] |
朱劲松, 郭晓宇, 亢景付, 等. 耐候桥梁钢腐蚀力学行为研究及其应用进展[J]. 中国公路学报, 2019, 32(5): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905002.htm
ZHU Jin-song, GUO Xiao-yu, KANG Jing-fu, et al. Research on corrosion behavior, mechanical property and application of weathering steel in bridges[J]. China Journal of Highway and Transport, 2019, 32(5): 1-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905002.htm
|
[8] |
张浩. 强腐作用下桥梁钢力学性能退化试验研究[D]. 西安: 西安工业大学, 2022.
ZHANG Hao. Experimental study on degradation of mechanical properties of bridge steel under strong corrosion[D]. Xi'an: Xi'an Technological University, 2022. (in Chinese)
|
[9] |
彭建新, 阳逸鸣, 唐皇, 等. 锈蚀钢筋蚀坑特征分析及其对力学性能的影响[J]. 长沙理工大学学报(自然科学版), 2015, 12(3): 50-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201503008.htm
PENG Jian-xin, YANG Yi-ming, TANG Huang, et al. Characteristics of pitting corrosion for steel reinforcement and its effect on mechanical properties[J]. Journal of Changsha University of Science and technology (Natural Science Edition), 2015, 12(3): 50-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNQG201503008.htm
|
[10] |
徐善华, 张宗星, 秦广冲. 考虑腐蚀钢板表面形貌的三维逆向重建及力学性能退化分析[J]. 材料科学与工程学报, 2017, 35(1): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201701016.htm
XU Shan-hua, ZHANG Zong-xing, QIN Guang-chong. Three- dimensional reconstruction and degradation of mechanical properties based on real surface of corrosion steel[J]. Journal of Materials Science and Engineering, 2017, 35(1): 81-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201701016.htm
|
[11] |
徐善华, 张宗星, 何羽玲, 等. 考虑蚀坑影响的腐蚀钢板力学性能退化试验研究[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(2): 164-171. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201702002.htm
XU Shan-hua, ZHANG Zong-xing, HE Yu-ling, et al. Experimental study on monotonic tensile behavior of corroded steel in neutral salt spray environment[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2017, 49(2): 164-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJZ201702002.htm
|
[12] |
彭建新, 张伟, 阳逸鸣, 等. 腐蚀对高性能钢Q550E力学指标影响的试验研究[J]. 公路交通科技, 2018, 35(10): 56-62. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201810008.htm
PENG Jian-xin, ZHANG Wei, YANG Yi-ming, et al. Experimental study on influence of corrosion on mechanical index of high performance steel Q550E[J]. Journal of Highway and Transportation Research and Development, 2018, 35(10): 56-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201810008.htm
|
[13] |
QIN Guang-chong, XU Shan-hua, YAO Dao-qiang, et al. Study on the degradation of mechanical properties of corroded steel plates based on surface topography[J]. Journal of Constructional Steel Research, 2016, 125: 205-217.
|
[14] |
KHEDMATI M R, NOURI Z H M E. Analytical simulation of nonlinear elastic-plastic average stress-average strain relationships for un-corroded/both-sides randomly corroded steel plates under uniaxial compression[J]. Thin-Walled Structures, 2015, 86: 132-141.
|
[15] |
TOHIDI S, SHARIFI Y. Load-carrying capacity of locally corroded steel plate girder ends using artificial neural network[J]. Thin-Walled Structures, 2016, 100: 48-61.
|
[16] |
BAJRACHARYA S, SASAKI E, TAMURA H. Numerical study on corrosion profile estimation of a corroded steel plate using eddy current[J]. Structure and Infrastructure Engineering, 2019, 15(9): 1151-1164.
|
[17] |
KARINA C N, CHUN P J, OKUBO K. Tensile strength prediction of corroded steel plates by using machine learning approach[J]. Steel and Composite Structures, 2017, 25: 635-641.
|
[18] |
RAIPUT A, PAIK J K. Effects of naturally-progressed corrosion on the chemical and mechanical properties of structural steels[J]. Structures, 2021, 29: 2120-2138.
|
[19] |
王友德, 徐善华, 李晗, 等. 一般大气环境下锈蚀结构钢表面特征与随机模型[J]. 金属学报, 2020, 56(2): 148-160. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202002003.htm
WANG You-de, XU Shan-hua, LI Han, et al. Surface characteristics and stochastic model of corroded structural steel under general atmospheric environment[J]. Acta Metallurgica Sinica, 2020, 56(2): 148-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSXB202002003.htm
|
[20] |
WANG You-de, XU Shan-hua, WANG Hao, et al. Predicting the residual strength and deformability of corroded steel plate based on the corrosion morphology[J]. Construction and Building Materials, 2017, 152: 777-793.
|
[21] |
XU Shan-hua, ZHANG Hai-jiang, WANG You-de. Estimation of the properties of corroded steel plates exposed to salt-spray atmosphere[J]. Corrosion Engineering Science and Technology, 2019, 54(5): 431-443.
|
[22] |
KAINUMA S, JEONG Y S, AHN J H. Investigation on the stress concentration effect at the corroded surface achieved by atmospheric exposure test[J]. Materials Science and Engineering: A, 2014, 602: 89-97.
|
[23] |
YU Qiang, DONG Chao-fang, FANG Yue-hua, et al. Atmospheric corrosion of Q235 carbon steel and Q450 weathering steel in Turpan, China[J]. Journal of Iron and Steel Research International, 2016, 23(10): 1061-1070.
|
[24] |
RAJPUT A, PAIK J K. Effects of naturally-progressed corrosion on the chemical and mechanical properties of structural steels[J]. Structures, 2021, 29: 2120-2138.
|
[25] |
乔文靖, 朱浩云, 张岗, 等. 强腐作用下钢板组合梁的力学性能及失效机理[J]. 长安大学学报(自然科学版), 2021, 41(2): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202102005.htm
QIAO Wen-jing, ZHU Hao-yun, ZHANG Gang, et al. Mechanical properties and failure mechanism of steel plate composite beams under strong corrosion[J]. Journal of Chang'an University (Natural Science Edition), 2021, 41(2): 46-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202102005.htm
|
[26] |
CHEN Jun-ling, LI Jin-wei, LI Zhe-xu. Experiment research on rate-dependent constitutive model of Q420[J]. Construction and Building Materials, 2017, 153: 816-823.
|
[27] |
WOLOSZY K K, GARBATOV Y. Random field modelling of mechanical behaviour of corroded thin steel plate specimens[J]. Engineering Structures, 2020, 212: 1-12.
|
[28] |
QIAO Wen-jing, ZHANG Hao, YANG Fan, et al. Ductility degradation of weathering steel Q345 after exposure to hydrochloric-acid corrosion dependent on pitting damage[J]. Journal of Materials in Civil Engineering, 2022, 34(11): 04022304.
|
[29] |
O'BRIEN C, MCBRIDE A, ZAGHI A E, et al. Mechanical behavior of stainless steel fiber-reinforced composites exposed to accelerated corrosion[J]. Materials, 2017, DOI: 10.3390/ma10070772.
|
[30] |
YANG F, YUAN M M, QIAO W J, et al. Mechanical investigation of carbon steel under strong corrosion effected by corrosion pits[J]. Mathematical Problems in Engineering, 2022, 1719196: 1-18.
|
[31] |
REN Song-bo, GU Ying, KONG Chao, et al. Effects of the corrosion pitting parameters on the mechanical properties of corroded steel[J]. Construction and Building Materials, 2021, 272: 121941.
|
[32] |
冯大帅. 中性盐雾腐蚀后Q345B钢材疲劳性能研究[D]. 徐州: 中国矿业大学, 2019.
FENG Da-shuai. Study on fatigue properties of Q345B steel after neutral salt spray corrosion[D]. Xuzhou: China University of Mining and Technology, 2019. (in Chinese)
|