Volume 22 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
WANG Chun-sheng, MAO Yu-bo, LI Pu-yu, ZHU Chen-hui. Digital fatigue test of detail group at deck-U rib-diaphragm access hole of steel bridge deck in cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 67-83. doi: 10.19818/j.cnki.1671-1637.2022.06.004
Citation: WANG Chun-sheng, MAO Yu-bo, LI Pu-yu, ZHU Chen-hui. Digital fatigue test of detail group at deck-U rib-diaphragm access hole of steel bridge deck in cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 67-83. doi: 10.19818/j.cnki.1671-1637.2022.06.004

Digital fatigue test of detail group at deck-U rib-diaphragm access hole of steel bridge deck in cable-stayed bridge

doi: 10.19818/j.cnki.1671-1637.2022.06.004
Funds:

National Natural Science Foundation of China 51578073

Innovation Capability Support Program of Shaanxi Province 2019TD-022

More Information
  • Author Bio:

    WANG Chunsheng (1972–), male, from Suihua city, Heilongjiang Province; professor of Chang'an University, PhD. He is mainly engaged in the research of steel bridges and composite beam bridges. E-mail: wcs2000wcs@163.com

  • Received Date: 2022-05-17
  • Publish Date: 2022-12-25
  • To investigate the fatigue crack propagation mechanism of steel bridge deck in cable-stayed bridges under the multi-field coupling effect, a model for the multi-scale digital fatigue test of the whole cable-stayed bridge was constructed. The entire welding process of the multi-pass welds at the detail group at the deck-U rib-diaphragm access hole was simulated to introduce the welding residual stress into the model for the digital fatigue test. The digital fracture parameter analysis and the digital fatigue test were conducted under the multi-field coupling effect by the extended finite element method to clarify the propagation mechanism and propagation behavior of typical fatigue cracks of the detail group at the deck-U rib-diaphragm access hole. Research results show that the high residual tensile stress can be observed at the detail group at the deck-U rib-diaphragm access hole, with a maximum being close to the yield strength of steel. The influence of the welding residual stress on the fatigue performance of the steel bridge deck cannot be ignored. Subsequent welds affect the stress field distribution in the existing weld area. Therefore, the entire welding process needs to be simulated when the welding residual stress field in the influence range of multi-pass welds is analyzed and calculated. Under the multi-field coupling effect of dead-load stress field, live-load stress field and welding residual stress field, the maximum equivalent stress intensity factor ranges of four typical types of fatigue cracks of the detail group at the deck-U rib-diaphragm access hole are all larger than the fatigue crack propagation threshold according to the engineering criterion for the propagation of mixed cracks. In this case, the four types of fatigue cracks all propagate under the cyclic fatigue loading. Under the multi-field coupling effect, the fatigue cracks initiating from the deck-side weld toe of the deck-to-U rib welded joint above the access hole and those initiating from the U rib-side weld toe of the U rib-to-diaphragm welded joint are all mixed cracks of modes Ⅰ, Ⅱ, and Ⅲ dominated by mode-Ⅰ cracks. Nevertheless, the influences of mode-Ⅱ and mode-Ⅲ cracks cannot be overlooked. The fatigue cracks initiating from the deck-side weld root of the deck-to-U rib welded joint above the access hole and those initiating from the edge of the diaphragm access hole are all mode-Ⅰ cracks. The muti-scale digital fatigue test constructed under the multi-field coupling effect can provide analysis and simulation methods for the fatigue crack propagation in the steel bridge deck of a long-span bridge in operation. 1 tab, 28 figs, 32 refs.

     

  • loading
  • [1]
    王春生, 冯亚成. 正交异性钢桥面板的疲劳研究综述[J]. 钢结构, 2009, 24(9): 10-13, 32. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG200909004.htm

    WANG Chun-sheng, FENG Ya-cheng. Review of fatigue research for orthotropic steel bridge decks[J]. Steel Construction, 2009, 24(9): 10-13, 32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG200909004.htm
    [2]
    张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30, 39. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703002.htm

    ZHANG Qing-hua, BU Yi-zhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30, 39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703002.htm
    [3]
    王春生, 翟慕赛, HOUANKPO T O N. 正交异性钢桥面板典型细节疲劳强度研究[J]. 工程力学, 2020, 37(8): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202008012.htm

    WANG Chun-sheng, ZHAI Mu-sai, HOUANKPO T O N. Fatigue strength of typical details in orthotropic steel bridge deck[J]. Engineering Mechanics, 2020, 37(8): 102-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202008012.htm
    [4]
    王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201302011.htm

    WANG Chun-sheng, FU Bing-ning, ZHANG Qin, et al. Fatigue test on full-scale orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2013, 26(2): 69-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201302011.htm
    [5]
    WANG Chun-sheng, ZHAI Mu-sai, DUAN Lan, et al. Cold reinforcement and evaluation of steel bridges with fatigue cracks[J]. Journal of Bridge Engineering, 2018, 23(4): 04018014-1-11.
    [6]
    段兰, 王春生, 翟慕赛, 等. 基于声发射技术的钢桥面板疲劳损伤监测与评估[J]. 交通运输工程学报, 2020, 20(1): 60-73. doi: 10.19818/j.cnki.1671-1637.2020.01.004

    DUAN Lan, WANG Chun-sheng, ZHAI Mu-sai, et al. Monitoring and evaluation of fatigue damage for orthotropic steel deck using acoustic emission technology[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 60-73. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.004
    [7]
    SINGH I V, MISHRA B K, BHATTACHARYA S, et al. The numerical simulation of fatigue crack growth using extended finite element method[J]. International Journal of Fatigue, 2012, 36(1): 109-119. doi: 10.1016/j.ijfatigue.2011.08.010
    [8]
    XIAO Zhi-gang, YAMADA K, YA S, et al. Stress analyses and fatigue evaluation of rib-to-deck joints in steel orthotropic decks[J]. International Journal of Fatigue, 2008, 30(8): 1387-1397. doi: 10.1016/j.ijfatigue.2007.10.008
    [9]
    朱劲松, 郭耀华. 正交异性钢桥面板疲劳裂纹扩展机理及数值模拟研究[J]. 振动与冲击, 2014, 33(14): 40-47, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201414008.htm

    ZHU Jin-song, GUO Yao-hua. Numerical simulation on fatigue crack growth of orthotropic steel highway bridge deck[J]. Journal of Vibration and Shock, 2014, 33(14): 40-47, 71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201414008.htm
    [10]
    刘益铭, 张清华, 崔闯, 等. 正交异性钢桥面板三维疲劳裂纹扩展数值模拟方法[J]. 中国公路学报, 2016, 29(7): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607015.htm

    LIU Yi-ming, ZHANG Qing-hua, CUI Chuang, et al. Numerical simulation method for 3D fatigue crack propagation of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(7): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607015.htm
    [11]
    王春生, 翟慕赛, 唐友明, 等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30(3): 82-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703009.htm

    WANG Chun-sheng, ZHAI Mu-sai, TANG You-ming, et al. Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 82-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703009.htm
    [12]
    DA SILVA A L L, CORREIRA J A F O, DE JESUS A M P, et al. Influence of fillet end geometry on fatigue behaviour of welded joints[J]. International Journal of Fatigue, 2019, 123: 196-212. doi: 10.1016/j.ijfatigue.2019.02.025
    [13]
    赵秋, 吴冲. U肋加劲板焊接残余应力数值模拟分析[J]. 工程力学, 2012, 29(8): 262-268. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201208042.htm

    ZHAO Qiu, WU Chong. Numerical analysis of welding residual stress of U-rib stiffened plate[J]. Engineering Mechanics, 2012, 29(8): 262-268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201208042.htm
    [14]
    VAN DEN BERG N, XIN Hao-hui, VELJKOVIC M, et al. Effects of residual stresses on fatigue crack propagation of an orthotropic steel bridge deck[J]. Materials and Design, 2021, 198: 109294.
    [15]
    李爱群, 司政, 邓扬, 等. 钢桥面横隔板与U肋焊接处残余应力场分析[J]. 桥梁建设, 2019, 49(6): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201906007.htm

    LI Ai-qun, SI Zheng, DENG Yang, et al. Analysis of residual stress field in welding joints between diaphragms and U ribs of steel bridge deck[J]. Bridge Construction, 2019, 49(6): 36-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201906007.htm
    [16]
    WANG Chun-sheng, WANG Yu-zhu, CUI Bing, et al. Numerical simulation of distortion-induced fatigue crack growth using extended finite element method[J]. Structure and Infrastructure Engineering, 2020, 16(1): 106-122.
    [17]
    孙正华, 李兆霞, 陈鸿天. 大跨斜拉桥结构行为一致多尺度有限元模拟[J]. 中国公路学报, 2009, 22(5): 68-74, 117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200905010.htm

    SUN Zheng-hua, LI Zhao-xia, CHEN Hong-tian. Concurrent multi-scale finite element modeling of long-span cable-stayed bridge[J]. China Journal of Highway and Transport, 2009, 22(5): 68-74, 117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200905010.htm
    [18]
    YAN Fei, CHEN Wei-zhen, LIN Zhi-bin. Prediction of fatigue life of welded details in cable-stayed orthotropic steel deck bridges[J]. Engineering Structures, 2016, 127: 344-358.
    [19]
    BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620.
    [20]
    MOËS N, DOLBOW J, BELYTSCHKO T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131-150.
    [21]
    MELENK J M, BABUSKA I. The partition of unity finite element method: basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/2/3/4): 289-314.
    [22]
    孟建兵, 徐文骥, 董小娟, 等. 基于多物理环境顺序耦合法的联合弧特性分析[J]. 焊接学报, 2011, 32(8): 57-60, 116. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201108016.htm

    MENG Jian-bing, XU Wen-ji, DONG Xiao-juan, et al. Characteristics analysis of combined plasma arc based on sequential coupling method of physics environment approach[J]. Transactions of the China Welding Institution, 2011, 32(8): 57-60, 116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJXB201108016.htm
    [23]
    杨文, 石永久, 王元清, 等. 结构钢焊接残余应力三维有限元分析[J]. 吉林大学学报(工学版), 2007, 37(2): 347-352. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200702019.htm

    YANG Wen, SHI Yong-jiu, WANG Yuan-qing, et al. Three-dimensional finite element analysis on welding residual stresses of construction steel[J]. Journal of Jilin University (Engineering and Technology Edition), 2007, 37(2): 347-352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200702019.htm
    [24]
    程久欢, 陈俐, 于有生. 焊接热源模型的研究进展[J]. 焊接技术, 2004, 33(1): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ200401006.htm

    CHENG Jiu-huan, CHEN Li, YU You-sheng. Research progress of welding heat source model[J]. Welding Technology, 2004, 33(1): 13-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HSJJ200401006.htm
    [25]
    GOLDAK J, CHAKRAVARTI A, BIBBY M. A new finite element model for welding heat sources[J]. Metallurgical Transactions B, 1984, 15(2): 299-305.
    [26]
    吴冲, 刘海燕, 张志宏, 等. 桥面铺装温度对正交异性钢桥面板疲劳的影响[J]. 同济大学学报(自然科学版), 2013, 41(8): 1213-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201308017.htm

    WU Chong, LIU Hai-yan, ZHANG Zhi-hong, et al. Influence of pavements temperature on fatigue life of orthotropic deck of steel bridge[J]. Journal of Tongji University (Natural Science), 2013, 41(8): 1213-1218. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201308017.htm
    [27]
    李丽娟, 崔闯, 卜一之, 等. 铺装层对正交异性钢桥面板疲劳性能影响效应研究[J]. 世界桥梁, 2016, 44(5): 48-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201605010.htm

    LI Li-juan, CUI Chuang, BU Yi-zhi, et al. Study of influential effects of pavement on fatigue performance of orthotropic steel deck plate[J]. World Bridges, 2016, 44(5): 48-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201605010.htm
    [28]
    王春生, 翟慕赛, HOUANKPO T N O, 等. 正交异性钢桥面板冷维护技术及评价方法[J]. 中国公路学报, 2016, 29(8): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htm

    WANG Chun-sheng, ZHAI Mu-sai, HOUANKPO T N O, et al. Cold maintenance technique and assessment method for orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(8): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htm
    [29]
    SIH G C. Strain-energy-density factor applied to mixed mode crack problems[J]. International Journal of Fracture, 1974, 10(3): 305-321.
    [30]
    金建三, 李润方. 工程断裂力学[J]. 重庆大学学报(自然科学版), 1978, 1(4): 79-119. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE197804006.htm

    JIN Jian-san, LI Run-fang. Engineering fracture mechanics[J]. Journal of Chongqing University (Natural Science), 1978, 1(4): 79-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE197804006.htm
    [31]
    PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528-533.
    [32]
    CHANG Jun, XU Jin-quan, MUTOH Y. A general mixed-mode brittle fracture criterion for cracked materials[J]. Engineering Fracture Mechanics, 2006, 73(9): 1249-1263.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (554) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return