Volume 22 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
CHEN Kang-ming, WU Qing-xiong, LUO Jian-ping, CHEN Bao-chun, HUANG Jian-hua. Test on robustness strengthening for suspended deck system in half-through and through arch bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 95-113. doi: 10.19818/j.cnki.1671-1637.2022.06.006
Citation: CHEN Kang-ming, WU Qing-xiong, LUO Jian-ping, CHEN Bao-chun, HUANG Jian-hua. Test on robustness strengthening for suspended deck system in half-through and through arch bridges[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 95-113. doi: 10.19818/j.cnki.1671-1637.2022.06.006

Test on robustness strengthening for suspended deck system in half-through and through arch bridges

doi: 10.19818/j.cnki.1671-1637.2022.06.006
Funds:

National Key Research and Development Program of China 2017YFE0130300

National Natural Science Foundation of China 52078137

Natural Science Foundation of Fujian Province 2019J06009

More Information
  • Author Bio:

    CHEN Kang-ming (1985–), male, native of Xiapu, Fujian, associate researcher at Fuzhou University, doctor of engineering. Research interest: combined structures and steel structure bridges. E-mail: chen-kang-ming@163.com

    WU Qing-xiong(1973-), male, professor, PhD, wuqingx@fzu.edu.cn

  • Received Date: 2022-05-10
  • Publish Date: 2022-12-25
  • To enhance the robustness of the suspended deck system of half-through and through arch bridges, the suspended deck system of half-through and through arch bridges without a stiffening girder in the longitudinal direction of the bridges was taken as the research object, a robustness strengthening structure with a steel tubular truss (STT) stiffened longitudinal girder was proposed for the suspended deck system, and a comparative analysis was made on the dynamic responses of the remained structures at the moment of hanger fracture before and after the robustness strengthening of the suspended deck system. A test and a finite element analysis were conducted on the model of the robustness strengthening structure with an STT stiffened longitudinal girder, and the mechanical performance and failure mode of the strengthened structure after the hanger fracture were studied. The effects of the preload of finish-rolled screw-thread steel bar, the thickness of perforated steel plate, and the material on the mechanical performance of the robustness strengthening structure were discussed. Research results show that after the suspended deck system is strengthened by the STT stiffened longitudinal girder, the maximum vertical displacement and stress of the deck system reduce by 1.30(1.31) and 3.31(1.99) times, respectively, when the long (short) hanger fractures. The maximum cable force of the hanger adjacent to the fractured one reduces by 1.25 (1.25) times. In the elastic-plastic stage, the perforated steel plate of the structure strengthened by the STT stiffened longitudinal girder is subjected to bending deformation, and the embedded steel rebar near the bottom of the cross beam is damaged. When the ultimate load is reached, a crack appears on the weld between the middle-lower stiffened steel plate and the perforated steel plate. Then, a crack appears on the weld between the lower chord and the perforated steel plate, and the carrying capacity is thereby lost. The reasonable preload of the finish-rolled screw-thread steel bar is 50 kN, and the reasonable thickness of the perforated steel plate is 20 mm. The ultimate load of the strengthened structure increases by 11.9% when the material of the perforated steel plate is updated from Q235 to Q345. This indicates that enhancing the material strength of the perforated steel plate can effectively improve the ultimate bearing capacity of the strengthened structure. To sum up, utilizing the STT stiffened longitudinal girder to reinforce the suspended deck system in half-through and through arch bridges can effectively strengthen its robustness.

     

  • loading
  • [1]
    范冰辉, 陈宝春, 吴庆雄. 考虑强健性的中、下承式拱桥技术状况评定[J]. 桥梁建设, 2018, 48(5): 64-68. doi: 10.3969/j.issn.1003-4722.2018.05.013

    FAN Bing-hui, CHEN Bao-chun, WU Qing-xiong. Technical condition evaluation of half-through and through arch bridges considering robustness[J]. Bridge Construction, 2018, 48(5): 64-68. (in Chinese) doi: 10.3969/j.issn.1003-4722.2018.05.013
    [2]
    魏建东. 宜宾小南门大桥的抢修加固与恢复工程[J]. 公路, 2003(4): 34-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200304009.htm

    WEI Jian-dong. Urgent reinforcement and restoration of Xiaonanmen Bridge in Yibin City[J]. Highway, 2003(4): 34-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200304009.htm
    [3]
    余印根. 中、下承式拱桥悬吊桥面系强健性研究[D]. 福州: 福州大学, 2015.

    YU Yin-gen. Study on robustness of suspended floor system in half-through and through arch bridges[D]. Fuzhou: Fuzhou University, 2015. (in Chinese)
    [4]
    陈宝春, 范冰辉, 余印根, 等. 钢管混凝土拱桥强健性设计[J]. 桥梁建设, 2016, 46(6): 88-93. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606018.htm

    CHEN Bao-chun, FAN Bing-hui, YU Yin-gen, et al. Robustness design of concrete-filled steel tube arch bridges[J]. Bridge Construction, 2016, 46(6): 88-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201606018.htm
    [5]
    赵虎, 蒲黔辉. 吊杆拱桥考虑结构缺陷及交通量增加的受力特性[J]. 重庆大学学报, 2014, 37(6): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201406004.htm

    ZHAO Hu, PU Qian-hui. Mechanical characteristics of tied-arch bridge under structural defects and traffic increase[J]. Journal of Chongqing University, 2014, 37(6): 25-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FIVE201406004.htm
    [6]
    杨建喜, 陈惟珍, 古锐. 拱桥短吊杆动力特性分析[J]. 桥梁建设, 2014, 44(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201403003.htm

    YANG Jian-xi, CHEN Wei-zhen, GU Rui. Analysis of dynamic characteristics of short hangers of arch bridge[J]. Bridge Construction, 2014, 44(3): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201403003.htm
    [7]
    MELLO L, LE Jia-liang, BALLARINI R. Numerical modeling of delayed progressive collapse of reinforced concrete structures[J]. Journal of Engineering Mechanics, 2020, 146(10): 04020113. doi: 10.1061/(ASCE)EM.1943-7889.0001843
    [8]
    HAN Xu, HAN Bing, XIE Hui-bing, et al. Seismic stability analysis of the large-span concrete-filled steel tube arch bridge considering the long-term effects[J]. Engineering Structures, 2022, 268: 114744. doi: 10.1016/j.engstruct.2022.114744
    [9]
    SHAO Guo-tao, JIN Hui, JIANG Rui-nian, et al. Dynamic response and robustness evaluation of cable-supported arch bridges subjected to cable breaking[J]. Shock and Vibration, 2021, 2021: 6689630.
    [10]
    王兆铭, 胡香兰, 顾成凯, 等. 单根吊杆断裂时组合体系拱桥结构强健性研究[J]. 结构工程师, 2012, 28(3): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201203011.htm

    WANG Zhao-ming, HU Xiang-lan, GU Cheng-kai, et al. Research on structural robustness for single cable loss in combination system arched bridges[J]. Structural Engineers, 2012, 28(3): 50-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201203011.htm
    [11]
    吴启明. 吊杆拱桥断索冲击效应的简化静力计算方法研究[J]. 中国水运, 2014, 14(4): 253-254. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201404110.htm

    WU Qi-ming. Research on simplified static calculation method of broken cable impact effect of suspender arch bridge[J]. China Water Transport, 2014, 14(4): 253-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSUX201404110.htm
    [12]
    吴庆雄, 余印根, 陈宝春. 下承式钢管混凝土刚架系杆拱桥吊杆断裂动力分析[J]. 振动与冲击, 2014, 33(15): 144-149. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201415026.htm

    WU Qing-xiong, YU Yin-gen, CHEN Bao-chun. Dynamic analysis for cable loss of a rigid-frame tied through concrete-filled steel tubular arch bridge[J]. Journal of Vibration and Shock, 2014, 33(15): 144-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201415026.htm
    [13]
    滕军, 涂俊, 陈宜言, 等. 吊杆布置对拱桥破损安全性能的影响[J]. 工程抗震与加固改造, 2008, 30(6): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ200806015.htm

    TENG Jun, TU Jun, CHEN Yi-yan, et al. Analysis for failure safety of arch bridge with different disposal of suspenders[J]. Earthquake Resistant Engineering and Retrofitting, 2008, 30(6): 79-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ200806015.htm
    [14]
    苏明星, 杨运平. 某钢管混凝土系杆拱桥吊杆断裂影响分析[J]. 世界桥梁, 2016, 44(6): 74-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201606017.htm

    SU Ming-xing, YANG Yun-ping. Analysis of influence of fractured hangers on a bowstring concrete-filled steel tubular arch bridge[J]. World Bridges, 2016, 44(6): 74-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL201606017.htm
    [15]
    WU Guang-run, QIU Wen-liang, WU Tian-yu. Nonlinear dynamic analysis of the self-anchored suspension bridge subjected to sudden breakage of a hanger[J]. Engineering Failure Analysis, 2019, 97: 701-717.
    [16]
    YHIM S S, KONG M S, YOO Y S. Dynamic analysis of long-span arch bridge by fracturing hangers[J]. Journal of the Korea Institute for Structural Maintenance and Inspection, 2010, 14(2): 113-120.
    [17]
    彭桂瀚, 袁保星, 陈宝春. 加设钢管桁架纵梁改造中承式拱桥悬挂桥道系的应用研究[J]. 公路工程, 2009, 34(3): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200903028.htm

    PENG Gui-han, YUAN Bao-xing, CHEN Bao-chun. Research on strengthening suspended deck system for half-through arch bridge by setting longitudinal steel-tubular trusses[J]. Highway Engineering, 2009, 34(3): 109-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200903028.htm
    [18]
    王石磊, 高岩, 张勇. 以钢横梁受力为主的拱桥桥面系病害分析与加固方案探讨[J]. 铁道建筑, 2010, 50(6): 37-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201006016.htm

    WANG Shi-lei, GAO Yan, ZHANG Yong. Analysis of defects and reinforcement schemes of arch bridge deck system mainly stressed by steel crossbeam[J]. Railway Engineering, 2010, 50(6): 37-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201006016.htm
    [19]
    陈红. 丫髻沙大桥桥面系加固设计[J]. 桥梁建设, 2013, 43(2): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201302017.htm

    CHEN Hong. Strengthening design of floor system ofyajisha bridge[J]. Bridge Construction, 2013, 43(2): 93-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201302017.htm
    [20]
    林佳成. 中、下承式拱桥悬吊桥面系强健性设计计算方法研究[D]. 福州: 福州大学, 2020.

    LIN Jia-cheng. Study on the design and calculation method for the robustness of suspended floor system in half-through and through arch bridges[D]. Fuzhou: Fuzhou University, 2020. (in Chinese)
    [21]
    王欢围. 中、下承式拱桥悬吊桥面系强健性试验研究[D]. 福州: 福州大学, 2018.

    WANG Huan-wei. Experimental study on robustness of suspended floor system in half-through and through arch bridges[D]. Fuzhou: Fuzhou University, 2018. (in Chinese)
    [22]
    李祥龙, 杨阳, 栾龙发. 基于整体式模型的钢筋混凝土结构爆破拆除定向倒塌数值模拟[J]. 北京理工大学学报, 2013, 33(12): 1220-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201312002.htm

    LI Xiang-long, YANG Yang, LUAN Long-fa. Numerical simulation of reinforced concrete structure directional collapse by blasting demolition based on integral model[J]. Transactions of Beijing Institute of Technology, 2013, 33(12): 1220-1223. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201312002.htm
    [23]
    李小强, 孟庆阔, 杜一凡, 等. 拧紧策略对航空发动机单螺栓连接预紧力的影响[J]. 机械工程学报, 2020, 56(13): 231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202013023.htm

    LI Xiao-qiang, MENG Qing-kuo, DU Yi-fan, et al. Influence of tightening strategy on pre-tightening force of aero-engine single-bolt connection[J]. Journal of Mechanical Engineering, 2020, 56(13): 231-241. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202013023.htm
    [24]
    王博, 白国良, 代慧娟, 等. 再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J]. 工程力学, 2013, 30(10): 54-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201310009.htm

    WANG Bo, BAI Guo-liang, DAI Hui-juan, et al. Experimental and mechanical analysis of bond-slip performance between recycled concrete and rebar[J]. Engineering Mechanics, 2013, 30(10): 54-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201310009.htm
    [25]
    赵军, 唐兴荣, 刘启真. 混凝土结构多筋植筋的锚固性能试验研究[J]. 苏州科技大学学报(工程技术版), 2020, 33(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SZCJ202001005.htm

    ZHAO Jun, TANG Xing-rong, LIU Qi-zhen. Experimental study on anchorage behavior of multi-bar reinforcement in concrete structures[J]. Journal of Suzhou University of Science and Technology (Engineering and Technology), 2020, 33(1): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZCJ202001005.htm
    [26]
    苏伟强, 李婷, 朱虹, 等. 钢丝网砂浆层和附加肋提升嵌入式复材筋锚固性能试验研究[J]. 东南大学学报(自然科学版), 2018, 48(4): 692-698. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201804015.htm

    SU Wei-qiang, LI Ting, ZHU Hong, et al. Experimental study on enhancement of the anchorage properties of NSM FRP bars using the wire mesh mortar layer and additional ribs[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(4): 692-698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201804015.htm
    [27]
    尚守平, 黄新中, 杨甜. 快凝无机胶植筋锚固性能试验[J]. 建筑科学与工程学报, 2019, 36(1): 13-21. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201901003.htm

    SHANG Shou-ping, HUANG Xin-zhong, YANG Tian. Experiment on anchorage performance of planting rebar with rapid-solidification inorganic adhesive[J]. Journal of Architecture and Civil Engineering, 2019, 36(1): 13-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201901003.htm
    [28]
    郑山锁, 裴培, 张艺欣, 等. 钢筋混凝土粘结滑移研究综述[J]. 材料导报, 2018, 32(23): 4182-4191. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201823020.htm

    ZHENG Shan-suo, PEI Pei, ZHANG Yi-xin, et al. Review of research on bond-slip of reinforced concrete[J]. Materials Reports, 2018, 32(23): 4182-4191. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201823020.htm
    [29]
    徐铨彪, 干钢, 陈刚. 外包钢加固钢筋混凝土框架梁受力性能分析[J]. 建筑结构学报, 2016, 37(12): 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201612017.htm

    XU Quan-biao, GAN Gang, CHEN Gang. Analysis on mechanical behavior of RC frame beams encased with steel plate[J]. Journal of Building Structures, 2016, 37(12): 136-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201612017.htm
    [30]
    刘小娟, 蒋欢军. 钢筋混凝土框架结构基于时变的抗震性能研究[J]. 建筑结构学报, 2019, 40(3): 134-141. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903014.htm

    LIU Xiao-juan, JIANG Huan-jun. Study on time-dependent seismic performance of reinforced concrete moment-resisting frame structures[J]. Journal of Building Structures, 2019, 40(3): 134-141. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903014.htm
    [31]
    万征, 孟达, 宋琛琛. 一种适用于岩土的扩展强度及屈服准则[J]. 力学学报, 2019, 51(5): 1545-1556. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201905026.htm

    WAN Zheng, MENG Da, SONG Chen-chen. An extended strength and yield criterion for geomaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1545-1556. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201905026.htm
    [32]
    GAO Dan-ying, YAN Huan-huan, FANG Dong, et al. Bond strength and prediction model for deformed bar embedded in hybrid fiber reinforced recycled aggregate concrete[J]. Construction and Building Materials, 2020, 265: 120337.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (508) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return