Volume 22 Issue 6
Dec.  2022
Turn off MathJax
Article Contents
HUANG Wan-kun, WU Qing-xiong, WANG Qu. Mechanical property of improved hinge joint junction surface in prefabricated voided slab bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 169-181. doi: 10.19818/j.cnki.1671-1637.2022.06.011
Citation: HUANG Wan-kun, WU Qing-xiong, WANG Qu. Mechanical property of improved hinge joint junction surface in prefabricated voided slab bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 169-181. doi: 10.19818/j.cnki.1671-1637.2022.06.011

Mechanical property of improved hinge joint junction surface in prefabricated voided slab bridge

doi: 10.19818/j.cnki.1671-1637.2022.06.011
Funds:

National Key Research and Development Program of China 2017YFE0130300

National Natural Science Foundation of China 51808126

More Information
  • Author Bio:

    HUANG Wan-kun(1982-), male, experimentalist, PhD, huangwankun@fzu.edu.cn

    WU Qing-xiong(1973-), male, professor, PhD, wuqingx@fzu.edu.cn

  • Received Date: 2022-05-21
    Available Online: 2023-01-10
  • Publish Date: 2022-12-25
  • In order to improve the transverse mechanical property of prefabricated voided slab bridges, two hinge joint improvement methods were designed. Specifically, discontinuous steel bars could be replaced by continuous steel plates in hinge joint junction surfaces, and improved hinge joint structures and grouting materials could be used. A local model test method was adopted, and the normal and tangential strengths of the hinge joint junction surface were calculated. The formulas for calculating the flexural and shear capacities of the hinge joint junction surfaces with discontinuous steel bars and continuous steel plates were proposed. Research results indicate that the errors between the test values of local model and the calculation values from the proposed formula for calculating the flexural and shearing capacities are less than 10%, so it is proved that the proposed formula can accurately calculate the bearing capacities of hinge joint junction surface with continuous steel plate. For full-depth hinge joints without steel bars in junction surfaces, the normal strength of the junction surface is 1.29 MPa, which is 39% the axial tensile strength of weak side concrete. The tangential strength of the junction surface is 0.45 MPa, which is 1.5% the axial compressive strength of the weak side concrete. Compared with the hinge joint without steel bars in junction surface, the normal strengths of the hinge joint junction surfaces with discontinuous steel bars and continuous steel plates increase by 98% and 73%, respectively, and the tangential strengths of the junction surfaces increase by 71% and 78%, respectively. The normal strength of partial-depth hinge joint junction surfaces with normal concrete is 1.30 MPa, which is 40% the axial tensile strength of the weak side concrete. The tangential strength of the junction surfaces is 0.33 MPa, which is 1.1% the axial compressive strength of the weak side concrete. Compared with the junction surfaces with normal concrete grouting full-depth and partial-depth hinge joints, the normal strengths of the junction surfaces with UHPC grouting full-depth and partial-depth hinge joints improve by 13% and 21%, respectively, and the tangential strengths of the junction surfaces improve by 64% and 94%, respectively. 6 tabs, 15 figs, 32 refs.

     

  • loading
  • [1]
    HUSSEIN H H, SARGAND S M, KHOURY I, et al. Environment-induced behavior of transverse tie bars in adjacent prestressed box-girder bridges with partial depth shear keys[J]. Journal of Performance of Constructed Facilities, 2017, 31(5): 1-13.
    [2]
    陈康明, 吴庆雄, 黄宛昆, 等. 结合面底部带门式钢筋的铰接空心板桥受力性能参数分析[J]. 公路交通科技, 2016, 33(8): 65-75. doi: 10.3969/j.issn.1002-0268.2016.08.011

    CHEN Kang-ming, WU Qing-xiong, HUANG Wan-kun, et al. Parameter analysis on mechanical property of hinged hollow slab bridge with gate-type steel bars at bottom of junction surface[J]. Journal of Highway and Transportation Research and Development, 2016, 33(8): 65-75. (in Chinese) doi: 10.3969/j.issn.1002-0268.2016.08.011
    [3]
    吴庆雄, 黄宛昆, 王渠, 等. 新型装配式倒T形空心板桥受力性能[J]. 交通运输工程学报, 2019, 19(4): 12-23. doi: 10.3969/j.issn.1671-1637.2019.04.002

    WU Qing-xiong, HUANG Wan-kun, WANG Qu, et al. Mechanical property of new type of prefabricated inverted T-shape voided slab bridge[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 12-23. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.04.002
    [4]
    DUAN Lan, WANG Chun-sheng, WANG Shi-chao, et al. Full-scale bending test study for PC hollow slab girder using UHPFRC and composite reinforcement techniques[J]. Journal of Bridge Engineering, 2020, 25(12): 04020103. doi: 10.1061/(ASCE)BE.1943-5592.0001638
    [5]
    储兵. 空心板梁桥深铰缝受力性能研究[J]. 公路, 2021, 66(11): 178-181. doi: 10.3969/j.issn.1001-7372.2021.11.015

    CHU Bing. Research on mechanical performance of full-depth shear key of hollow slab girder bridge[J]. Highway, 2021, 66(11): 178-181. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.11.015
    [6]
    吴庆雄, 陈悦驰, 陈康明. 结合面底部带门式钢筋的铰接空心板破坏模式分析[J]. 交通运输工程学报, 2015, 15(5): 15-25. doi: 10.3969/j.issn.1671-1637.2015.05.003

    WU Qing-xiong, CHEN Yue-chi, CHEN Kang-ming. Failure mode analysis of hinged voided slab with gate-type steel rebars at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 15-25. (in Chinese) doi: 10.3969/j.issn.1671-1637.2015.05.003
    [7]
    项长生, 党聪, 周宇. 基于铰缝损伤度的空心板桥铰缝损伤识别方法[J]. 防灾减灾工程学报, 2022, 42(3): 523-533. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202203012.htm

    XIANG Chang-sheng, DANG Cong, ZHOU Yu. Hinge joint damage identification method of hollow slab bridge based on hinge joint damage degree[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(3): 523-533. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK202203012.htm
    [8]
    王渠, 吴庆雄, 陈宝春. 装配式空心板桥铰缝破坏模式试验研究[J]. 工程力学, 2014, 31(增): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1022.htm

    WANG Qu, WU Qing-xiong, CHEN Bao-chun. Test study on the failure mode of hinged joint in assembly voided slab bridge[J]. Engineering Mechanics, 2014, 31(S): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1022.htm
    [9]
    钱寅泉, 周正茂, 葛玮明, 等. 基于相对位移法的铰缝破损程度检测[J]. 公路交通科技, 2012, 29(7): 76-81. doi: 10.3969/j.issn.1002-0268.2012.07.013

    QIAN Yin-quan, ZHOU Zheng-mao, GE Wei-ming, et al. Deterioration inspection of hinge joints based on relative displacement method[J]. Journal of Highway and Transportation Research and Development, 2012, 29(7): 76-81. (in Chinese) doi: 10.3969/j.issn.1002-0268.2012.07.013
    [10]
    陈悦驰, 吴庆雄, 陈宝春. 装配式空心板桥铰缝破坏模式有限元分析[J]. 工程力学, 2014, 31(增): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1012.htm

    CHEN Yue-chi, WU Qing-xiong, CHEN Bao-chun. Failure mode of hinged joint in assembly voided slab bridge by finite element analysis[J]. Engineering Mechanics, 2014, 31(S): 51-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2014S1012.htm
    [11]
    HUSSEIN H H, WALSH K K, SARGAND S M, et al. Interfacial properties of ultrahigh- performance concrete and high-strength concrete bridge connections[J]. Journal of Materials in Civil Engineering, 2016, 28(5): 04015208. doi: 10.1061/(ASCE)MT.1943-5533.0001456
    [12]
    HUSSEIN H H, SARGAND S M, AL-JHAYYISH A K, et al. Contribution of transverse tie bars to load transfer in adjacent prestressed box-girder bridges with partial depth shear key[J]. Journal of Performance of Constructed Facilities, 2017, 31(2): 04016100. doi: 10.1061/(ASCE)CF.1943-5509.0000973
    [13]
    ZHOU Xiang-ming, MICKLEBOROUGH N, LI Zong-jin. Shear strength of joints in precast concrete segmental bridges[J]. ACI Structural Journal, 2005, 102(1): 3-11.
    [14]
    HUSSEIN H H, SARGAND S M, AL RIKABI F T, et al. Laboratory evaluation of ultrahigh-performance concrete shear key for prestressed adjacent precast concrete box girder bridges[J]. Journal of Bridge Engineering, 2017, 22(2): 1-13.
    [15]
    HUSSEIN H H, SARGAND S M, STEINBERG E P. Shape optimization of UHPC shear keys for precast prestressed, adjacent box-girder bridges[J]. Journal of Bridge Engineering, 2018, 23(4): 04018009. doi: 10.1061/(ASCE)BE.1943-5592.0001220
    [16]
    ISSA M A, VALLE C L, ABDALLA H A, et al. Performance of transverse joint grout materials in full-depth precast concrete bridge deck systems[J]. PCI Journal, 2003, 48(4): 92-103. doi: 10.15554/pcij.07012003.92.103
    [17]
    SEMENDARY A A, WALSH K K, STEINBERG E P. Early-age behavior of an adjacent prestressed concrete box-beam bridge containing UHPC shear keys with transverse dowels[J]. Journal of Bridge Engineering, 2017, 22(5): 04017007. doi: 10.1061/(ASCE)BE.1943-5592.0001034
    [18]
    施颖, 孟科坦, 罗东海. 基于ABAQUS分析结合面粗糙度对UHPC铰缝接触面损伤的影响[J]. 浙江工业大学学报, 2019, 47(1): 13-17. doi: 10.3969/j.issn.1006-4303.2019.01.003

    SHI Ying, MENG Ke-tan, LUO Dong-hai. The influence of roughness of bonding surfaces on the contact surface damage of hinge joints with UHPC based on ABAQUS[J]. Journal of Zhejiang University of Technology, 2019, 47(1): 13-17. (in Chinese) doi: 10.3969/j.issn.1006-4303.2019.01.003
    [19]
    张阳, 王兴旺. UHPC加固RC结构交界面抗剪性能试验研究[J]. 中外公路, 2017, 37(2): 105-111. doi: 10.14048/j.issn.1671-2579.2017.02.024

    ZHANG Yang, WANG Xing-wang. Experimental study on shear behavior of interface of RC structure strengthened by UHPC[J]. Journal of China and Foreign Highway, 2017, 37(2): 105-111. (in Chinese) doi: 10.14048/j.issn.1671-2579.2017.02.024
    [20]
    赵志方, 赵国藩, 刘健. 新老混凝土粘结抗拉性能的试验研究[J]. 建筑结构学报, 2001, 22(2): 51-56. doi: 10.3321/j.issn:1000-6869.2001.02.009

    ZHAO Zhi-fang, ZHAO Guo-fan, LIU Jian. Experimental study on adhesive tensile performance of young on old concrete[J]. Journal of Building Structures, 2001, 22(2): 51-56. (in Chinese) doi: 10.3321/j.issn:1000-6869.2001.02.009
    [21]
    HANNA K E, MORCOUS G, TADROS M K. Transverse post-tensioning design and detailing of precast prestressed concrete adjacent-box-girder bridges[J]. PCI Journal, 2009, 54(4): 160-174.
    [22]
    项贻强, 邢骋, 邵林海, 等. 横向加固空心板梁桥荷载横向分布计算方法与试验研究[J]. 中国公路学报, 2013, 26(2): 63-76. doi: 10.3969/j.issn.1001-7372.2013.02.010

    XIANG Yi-qiang, XING Cheng, SHAO Lin-hai, et al. Calculating method and experimental research on lateral load distribution of transversely strengthened hollow slab bridge[J]. China Journal of Highway and Transport, 2013, 26(2): 63-76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.010
    [23]
    黄海新, 安帅锟, 程寿山. 基于反拱行为的空心板桥横向体外预应力加固模型[J]. 公路交通科技, 2018, 35(1): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201801008.htm

    HUANG Hai-xin, AN Shuai-kun, CHENG Shou-shan. A lateral external prestress reinforcement model for hollow slab bridge based on arching behavior[J]. Journal of Highway and Transportation Research and Development, 2018, 35(1): 55-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201801008.htm
    [24]
    吴庆雄, 黄宛昆, 陈宝春, 等. 结合面底部设开孔钢板的铰接空心板力学性能[J]. 交通运输工程学报, 2017, 17(4): 45-54. doi: 10.3969/j.issn.1671-1637.2017.04.005

    WU Qing-xiong, HUANG Wan-kun, CHEN Bao-chun, et al. Mechanical property of hinged voided slab with perforated steel plates at bottom of junction surface[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 45-54. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.04.005
    [25]
    金辉, 徐岳, 姜凤华, 等. 锚贴U形钢板-混凝土组合加固RC梁的抗弯试验[J]. 中国公路学报, 2020, 33(9): 206-214. doi: 10.3969/j.issn.1001-7372.2020.09.020

    JIN Hui, XU Yue, JIANG Feng-hua, et al. Bending behavior experiment of RC beams with U-shaped steel and concrete composite reinforcement[J]. China Journal of Highway and Transport, 2020, 33(9): 206-214. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.09.020
    [26]
    LABIB S N, EL-GENDY M G, EL-SALAKAWY E F. Adjacent concrete box girders transversely post-tensioned at top flanges only: experimental investigation[J]. Journal of Bridge Engineering, 2021, 26(4): 04021017. doi: 10.1061/(ASCE)BE.1943-5592.0001699
    [27]
    SARGAND S M, WALSH K K, HUSSEIN H H, et al. Modeling the shear connection in adjacent box-beam bridges with ultrahigh-performance concrete joints. Ⅱ: load transfer mechanism[J]. Journal of Bridge Engineering, 2017, 22(8): 04017044, 1-11.
    [28]
    ZHANG Shou-qi, DU Shi-zhao, ANG Yuan, et al. Study on performance of prestressed concrete hollow slab beams reinforced by grouting with ultra-high performance concrete[J]. Case Studies in Construction Materials, 2021, 15(12): e00583.
    [29]
    SEMENDARY A A, STEINBERG E P, WALSH K K, et al. Live-load moment-distribution factors for an adjacent precast prestressed concrete box beam bridge with reinforced UHPC shear key connections[J]. Journal of Bridge Engineering, 2017, 22(11): 04017088. doi: 10.1061/(ASCE)BE.1943-5592.0001127
    [30]
    STEINBERG E P, SEMENDARY A A. Evaluation of transverse tie rods in a 50-year-old adjacent prestressed concrete box beam bridge[J]. Journal of Bridge Engineering, 2017, 22(3), 05016010. doi: 10.1061/(ASCE)BE.1943-5592.0001001
    [31]
    YAMANE T, TADROS M K, ARUMUGASAAMY P. Short to medium span precast prestressed concrete bridges in Japan[J]. PCI Journal, 1994, 39(2): 74-100. doi: 10.15554/pcij.03011994.74.100
    [32]
    叶见曙, 刘九生, 俞博, 等. 空心板混凝土铰缝抗剪性能试验研究[J]. 公路交通科技, 2013, 30(6): 33-39. doi: 10.3969/j.issn.1002-0268.2013.06.007

    YE Jian-shu, LIU Jiu-sheng, YU Bo, et al. Experiment on shear property of hinge joints of concrete hollow slab[J]. Journal of Highway and Transportation Research and Development, 2013, 30(6): 33-39. (in Chinese) doi: 10.3969/j.issn.1002-0268.2013.06.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (376) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return