Volume 23 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
HOU Bo-wen, QIN Jia-dong, GAO Liang, MA Chao-zhi, LIU Xiu-bo, WANG Pu. Influencing factors of rail burn formation for high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 132-142. doi: 10.19818/j.cnki.1671-1637.2023.01.010
Citation: HOU Bo-wen, QIN Jia-dong, GAO Liang, MA Chao-zhi, LIU Xiu-bo, WANG Pu. Influencing factors of rail burn formation for high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 132-142. doi: 10.19818/j.cnki.1671-1637.2023.01.010

Influencing factors of rail burn formation for high-speed railway

doi: 10.19818/j.cnki.1671-1637.2023.01.010
Funds:

Fundamental Research Funds for the Central Universities 2022JBCZ009

Science and Technology Research and Development Project of China State Railway Group Co., Ltd. P2021G053

National Natural Science Foundation of China 51827813

More Information
  • Author Bio:

    HOU Bo-wen(1985-), male, associate professor, PhD, bwhou@bjtu.edu.cn

    WANG Pu(1988-), male, associate professor, PhD, wpwp2012@yeah.net

  • Received Date: 2022-08-11
    Available Online: 2023-03-08
  • Publish Date: 2023-02-25
  • The ANSYS explicit dynamic analysis was employed to build a three-dimensional transient wheel-rail contact mechanical-thermal coupling finite element model with the influence of temperature on the thermo-elastoplastic material parameters taken into consideration. Under the working conditions of an initial temperature of 30 ℃, an axle load of 16 t, an initial speed of 300 km·h-1, and a slip-to-roll ratio of 30%, the contact pressure, effective plastic strain, temperature distribution and its variation characteristics of the rail tread were studied at the earlier, middle, and later moments when the wheel passed by the typical rail sections. On this basis, the influences of the train axle load, rail tread state, as well as the train traction and braking states on the maximum temperature rise and maximum contact pressure of the rail tread were further analyzed, and the formation mechanism of rail burn was discussed on the basis of the formation mechanism of the martensite white etching layer of rail. Research results show that under the calculation conditions of this paper, the maximum contact pressure of the rail tread is 1 186.43 MPa, which appears at the center of the contact zone. The residual thermal and mechanical stresses inside the rail can be found after the wheel passes. The maximum effective plastic strain of the rail is 0.028 2. The maximum temperature rise is 554.55 ℃. When the train axle load increases from 12 t to 16 t, the maximum temperature rise of the rail increases from 339.89 ℃ to 402.79 ℃. When the friction coefficient of the rail tread increases from 0.2 to 0.6, the maximum temperature rise of the rail increases from 230.93 ℃ to 519.25 ℃. When the slip-to-roll ratio increases from 10% to 40%, the maximum temperature rises of the rail caused by the wheel braking and traction increase from 264.52 ℃ to 700.46 ℃ and from 362.10 ℃ to 819.61 ℃, respectively. Under the same slip-to-roll ratio, the maximum temperature rise of the rail caused by the traction condition is more significant than that caused by the braking condition. In particular, when the slip-to-roll ratio increases to 40%, the maximum temperatures of the rail tread are 700.46 ℃ and 819.61 ℃ under the braking and traction conditions, respectively. The maximum temperature rise of the rail is higher than the phase transition temperature. As a result, a martensite white etching layer on the rail tread is formed to develop rail burn on the rail tread.

     

  • loading
  • [1]
    张博, 刘秀波. 基于机器视觉的圆斑状钢轨擦伤检测算法[J]. 铁道建筑, (2022-12-06)[2023-01-10]. https://kns.cnki.net/kcms/detail//11.2027.U.20221205.1837.005.html.

    ZHANG Bo, LIU Xiu-bo. Detection algorithm of circular spot rail squat based on machine vision[J]. Railway Engineering, (2022-12-06)[2023-01-10]. https://kns.cnki.net/kcms/detail//11.2027.U.20221205.1837.005.html. (in Chinese)
    [2]
    常崇义, 蔡园武 李兰, 等. 高速轮轨黏着机理的研究进展及其应用[J]. 中国铁路, 2017(11): 24-32. doi: 10.19549/j.issn.1001-683x.2017.11.024

    CHANG Chong-yi, CAI Yuan-wu, LI Lan, et al. Research progress and application of the mechanism of high-speed wheel rail adhesion[J]. China Railway, 2017(11): 24-32. (in Chinese) doi: 10.19549/j.issn.1001-683x.2017.11.024
    [3]
    魏堂建, 刘林芽, 李纪阳, 等. 客运专线钢轨擦伤原因分析[J]. 铁道科学与工程学报, 2015, 12(3): 489-495. doi: 10.19713/j.cnki.43-1423/u.2015.03.006

    WEI Tang-jian, LIU Lin-ya, LI Ji-yang, et al. Analysis the reason of passenger line's rail scratch[J]. Journal of Railway Science and Engineering, 2015, 12(3): 489-495. (in Chinese) doi: 10.19713/j.cnki.43-1423/u.2015.03.006
    [4]
    翟婉明, 赵春发. 现代轨道交通工程科技前沿与挑战[J]. 西南交通大学学报, 2016, 51(2): 209-226. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602002.htm

    ZHAI Wan-ming, ZHAO Chun-fa. Frontiers and challenges of sciences and technologies in modern railway engineering[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 209-226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602002.htm
    [5]
    李闯, 张银花, 田常海, 等. 高速铁路钢轨服役状态及病害整治研究[J]. 铁道建筑, 2020, 60(8): 126-129, 142. doi: 10.3969/j.issn.1003-1995.2020.08.29

    LI Chuang, ZHANG Yin-hua, TIAN Chang-hai, et al. Study on rail service status and disease treatment of rail for high speed railway[J]. Railway Engineering, 2020, 60(8): 126-129, 142. (in Chinese) doi: 10.3969/j.issn.1003-1995.2020.08.29
    [6]
    DENG Xiang-yun, QIAN Zhi-wei, LI Zi-li, et al. Investigation of the formation of corrugation-induced rail squats based on extensive field monitoring[J]. International Journal of Fatigue, 2018, 112: 94-105. doi: 10.1016/j.ijfatigue.2018.03.002
    [7]
    ZHOU Yan, MO Ji-liang, CAI Zhen-bing, et al. Third-body and crack behavior in white etching layer induced by sliding-rolling friction[J]. Tribology International, 2019, 140: 105882. doi: 10.1016/j.triboint.2019.105882
    [8]
    LIAN Qing-lin, ZHU Hong-tao, DENG Guan-yu, et al. Evolution of thermally induced white etching layer at rail surface during multiple wheel/train passages[J]. International Journal of Fatigue, 2022, 159: 106799. doi: 10.1016/j.ijfatigue.2022.106799
    [9]
    XU Tian, ZENG Dong-fang, LU Lian-tao, et al. Numerical investigation of the formation of white etching layer in wheel steel with high Si and Mn contents[J]. Engineering Failure Analysis, 2021, 122: 105286. doi: 10.1016/j.engfailanal.2021.105286
    [10]
    GUTIÉRREZ GUZMÁN F, SOUS C, VAN LIER H, et al. An energetic approach for the prognosis of thermally induced white etching layers in bearing steel 100CrMn6[J]. Tribology International, 2020, 143: 106096. doi: 10.1016/j.triboint.2019.106096
    [11]
    PAN Rui, REN Rui-ming, CHEN Chun-huan, et al. The microstructure analysis of white etching layer on treads of rails[J]. Engineering Failure Analysis, 2017, 82: 39-46. doi: 10.1016/j.engfailanal.2017.06.018
    [12]
    董永刚, 仪帅, 黄鑫磊, 等. 重载列车紧急制动过程车轮踏面疲劳裂纹萌生寿命预测[J]. 中国铁道科学, 2021, 42(5): 123-131. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202105014.htm

    DONG Yong-gang, YI Shuai, HUANG Xin-lei, et al. Prediction of fatigue crack initiation life of wheel tread during emergency braking of heavy haul train[J]. China Railway Science, 2021, 42(5): 123-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202105014.htm
    [13]
    WU Jun, PETROV R H, NAEIMI M, et al. Laboratory simulation of martensite formation of white etching layer in rail steel[J]. International Journal of Fatigue, 2016, 91: 11-20. doi: 10.1016/j.ijfatigue.2016.05.016
    [14]
    LIAN Qing-lin, DENG Guan-yu, AL-JUBOORI A, et al. Crack propagation behavior in white etching layer on rail steel surface[J]. Engineering Failure Analysis, 2019, 104: 816-829. doi: 10.1016/j.engfailanal.2019.06.067
    [15]
    BERNSTEINER C, MVLLER G, MEIERHOFER A, et al. Development of white etching layers on and experiments rails: simulations and experiments[J]. Wear, 2016, 366/367: 116-122. doi: 10.1016/j.wear.2016.03.028
    [16]
    LIAN Qing-lin, DENG Guan-yu, KIET-TIEU A, et al. Thermo- mechanical coupled finite element analysis of rolling contact fatigue and wear properties of a rail steel under different slip ratios[J]. Tribology International, 2020, 141: 105943. doi: 10.1016/j.triboint.2019.105943
    [17]
    NAEIMI M, LI Shao-guang, LI Zi-li, et al. Thermomechanical analysis of the wheel-rail contact using a coupled modelling procedure[J]. Tribology International, 2018, 117: 250-260. doi: 10.1016/j.triboint.2017.09.010
    [18]
    WU Ya-ping, WEI Yun-peng, LIU Yang, et al. 3-D analysis of thermal-mechanical behavior of wheel/rail sliding contact considering temperature characteristics of materials[J]. Applied Thermal Engineering, 2017, 115: 455-462. doi: 10.1016/j.applthermaleng.2016.12.136
    [19]
    伏培林, 丁立, 赵吉中, 等. 考虑材料温度相关性的二维轮轨弹塑性滑动接触温升分析[J]. 力学学报, 2020, 52(5): 1245-1254. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005004.htm

    FU Pei-lin, DING Li, ZHAO Ji-zhong, et al. Frictional temperature analysis of two-dimensional elasto-plastic wheel-rail sliding contact with temperature-dependent material properties[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1245-1254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202005004.htm
    [20]
    刘洋, 蒋硕, 吴亚平, 等. 剥离掉块对轮轨滑动接触热弹塑性的影响[J]. 交通运输工程学报, 2016, 16(2): 46-55. doi: 10.19818/j.cnki.1671-1637.2016.02.006

    LIU Yang, JIANG Shuo, WU Ya-ping, et al. Effects of spallation on rail thermo-elasto-plasticity in wheel-rail sliding contact[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 46-55. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.02.006
    [21]
    杨新文, 顾少杰, 周顺华, 等. 30 t轴重重载铁路轮轨滑动接触引起的钢轨热相变分析[J]. 铁道学报, 2016, 38(7): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201607012.htm

    YANG Xin-wen, GU Shao-jie, ZHOU Shun-hua, et al. Analysis of rail thermal phase transformation due to wheel-rail sliding contact for heavy-haul railway with 30 t axle-load[J]. Journal of the China Railway Society, 2016, 38(7): 84-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201607012.htm
    [22]
    王伟, 王彩芸, 郭俊, 等. 滚滑工况下轮轨摩擦生热分析[J]. 机械设计与制造, 2012(6): 135-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201206052.htm

    WANG Wei, WANG Cai-yun, GUO Jun, et al. Analysis of the frictional heating of wheel-rail in rolling-sliding case[J]. Machinery Design and Manufacture, 2012(6): 135-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYZ201206052.htm
    [23]
    文永蓬, 徐小峻, 尚慧琳, 等. 考虑热力耦合的轨道车辆车轮建模与仿真[J]. 交通运输工程学报, 2016, 16(5): 30-41. doi: 10.19818/j.cnki.1671-1637.2016.05.004

    WEN Yong-peng, XU Xiao-jun, SHANG Hui-lin, et al. Modeling and simulation of railway vehicle wheel considering thermo-mechanical coupling[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 30-41. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.05.004
    [24]
    王平, 刘奕斌, 高原, 等. 表面选区强化对钢轨波磨处轮轨滚动接触行为的影响[J]. 铁道学报, 2020, 42(5): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202005014.htm

    WANG Ping, LIU Yi-bin, GAO yuan, et al. A study on influence of surface strengthening on wheel-rail rolling contact behavior at rail corrugation[J]. Journal of the China Railway Society, 2020, 42(5): 105-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202005014.htm
    [25]
    马超智, 辛涛, 高亮, 等. 基于改进摩擦功模型的轮轨滚动接触磨耗研究[J]. 铁道学报, 2019, 41(12): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201912008.htm

    MA Chao-zhi, XIN Tao, GAO Liang, et al. Study on wear of wheel-rail rolling contact based on improved friction work model[J]. Journal of the China Railway Society, 2019, 41(12): 49-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201912008.htm
    [26]
    连青林. 钢轨马氏体白蚀层相变及疲劳特性研究[D]. 北京: 北京交通大学, 2019.

    LIAN Qing-lin. Study on phase transformation and fatigue properties of martensite white etching layer of railway rail[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [27]
    SU Yun-shuai, LI Shu-xin, LU Si-yuan, et al. Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue[J]. International Journal of Fatigue, 2017, 105: 160-168.
    [28]
    沈明学, 刘鹏, 周琰, 等. 轮轨界面摩擦学转变结构层特性及其研究进展[J]. 摩擦学学报, 2021, 41(5): 773-788. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202105018.htm

    SHEN Ming-xue, LIU Peng, ZHOU Yan, et al. Characteristics of tribological transition layers at wheel-rail interface and its research progress[J]. Tribology, 2021, 41(5): 773-788. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202105018.htm
    [29]
    AL-JUBOORI A, ZHU H, WEXLER D, et al. Characterisation of white etching layers formed on rails subjected to different traffic conditions[J]. Wear, 2019, 436/437: 202998.
    [30]
    张军, 王雪萍, 马贺. 第三介质对轮轨最大静摩擦因数影响的试验[J]. 机械工程学报, 2018, 54(18): 123-128. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201818016.htm

    ZHANG Jun, WANG Xue-ping, MA He. Experimental study on the influence of the third medium on the wheel/rail maximum static friction coefficient[J]. Journal of Mechanical Engineering, 2018, 54(18): 123-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201818016.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (398) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return