Volume 23 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
DENG Wu, LI Ling-feng, LI Wei-han, ZHAO Hui-min. Fault feature extraction of bearing rolling elements under complex transmission path[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 184-194. doi: 10.19818/j.cnki.1671-1637.2023.01.014
Citation: DENG Wu, LI Ling-feng, LI Wei-han, ZHAO Hui-min. Fault feature extraction of bearing rolling elements under complex transmission path[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 184-194. doi: 10.19818/j.cnki.1671-1637.2023.01.014

Fault feature extraction of bearing rolling elements under complex transmission path

doi: 10.19818/j.cnki.1671-1637.2023.01.014
Funds:

National Natural Science Foundation of China 51605068

National Natural Science Foundation of China 51475065

National Natural Science Foundation of China 61771087

More Information
  • Author Bio:

    DENG Wu(1976-), male, professor, PhD, dw7689@163.com

    ZHAO Hui-min(1977-), female, professor, PhD, hm_zhao1977@126.com

  • Received Date: 2022-09-21
    Available Online: 2023-03-08
  • Publish Date: 2023-02-25
  • In order to eliminate the influence of complex transmission path on the vibration signal of bearing rolling elements and improve the ability of fault feature extraction, the problem of fault feature extraction of bearing rolling elements based on the variational mode decomposition (VMD), optimized maximum correlated kurtosis deconvolution (MCKD) and 1.5-dimensional spectrum was studied. The characteristics of original vibration signal of bearing rolling element and early fault signal and the influence of the complex transmission path on the vibration signal were analyzed. The VMD was employed to decompose the original vibration signal into a series of intrinsic mode functions (IMFs), and thus the frequency conversion component elimination method was proposed. Two IMFs components with large kurtosis values were selected for the signal reconstruction according to the kurtosis criterion. Based on the grid search method, the parameter optimization method of MCKD algorithm was studied to enhance the periodic fault characteristics of reconstructed signals and eliminate the influence of complex transmission path on the fault signal of bearing rolling elements. The 1.5-dimensional spectrum was used to analyze the reconstructed signals, and a new fault feature extraction method of bearing rolling elements under the complex transmission path was established, thus realizing their accurate fault diagnosis. In order to prove the effectiveness of the method, the data on the base roller of the bearing SKF6205 from Case Western Reserve University were selected for the was experimental verification and analysis. Experimental results show that the grid search method leads to the optimal parameter values (365, 85) of the filter length and the impact period in the MCKD algorithm. The optimized MCKD algorithm enhances the fault characteristics of the reconstructed signals, reduces the irrelevant frequency components, and significantly decreases the interference of other components. The proposed fault feature extraction method can effectively extract the fault feature frequency (140.6 Hz), double frequency (281.3 Hz), triple frequency (421.9 Hz) and all other components under the loads of 0, 735 and 1 470 W, and there is no influence from load conditions, thus eliminating the influence of complex transmission path on the fault feature extraction of bearing rollers. It follows that the proposed method can effectively solve the problems of the fault feature extraction and diagnosis of bearing rollers under the complex transmission path.

     

  • loading
  • [1]
    ZHAO Hui-min, SUN Meng, DENG Wu, et al. A new feature extraction method based on EEMD and multi-scale fuzzy entropy for motor bearing[J]. Entropy, 2016, 19(1): 14. doi: 10.3390/e19010014
    [2]
    刘长良, 武英杰, 甄成刚. 基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J]. 中国电机工程学报, 2015, 35(13): 3358-3365. doi: 10.13334/j.0258-8013.pcsee.2015.13.020

    LIU Chang-liang, WU Ying-jie, ZHEN Cheng-gang. Rolling bearing fault diagnosis based on variational mode decomposition and fuzzy C-means clustering[J]. Proceedings of the CSEE, 2015, 35(13): 3358-3365. (in Chinese) doi: 10.13334/j.0258-8013.pcsee.2015.13.020
    [3]
    唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201505012.htm

    TANG Gui-ji, WANG Xiao-long. Parameter optimized variational mode decomposition method with application to incipient fault diagnosis of rolling bearing[J]. Journal of Xi'an Jiaotong University, 2015, 49(5): 73-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201505012.htm
    [4]
    DENG Wu, LIU Hao-dong, ZHANG Sheng-jie, et al. Research on an adaptive variational mode decomposition with double thresholds for feature extraction[J]. Symmetry, 2018, 10(12): 684. doi: 10.3390/sym10120684
    [5]
    CHANDRA N H, SEKHAR A S. Fault detection in rotor bearing systems using time frequency techniques[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 105-133. doi: 10.1016/j.ymssp.2015.11.013
    [6]
    陈果, 贺志远, 尉询楷, 等. 基于整机的中介轴承外圈剥落故障振动分析[J]. 航空动力学报, 2020, 35(3): 658-672. doi: 10.13224/j.cnki.jasp.2020.03.022

    CHEN Guo, HE Zhi-yuan, WEI Xun-kai, et al. Vibration analysis of peeling fault of intermediate bearing out ring based on whole aero-engine[J]. Journal of Aerospace Power, 2020, 35(3): 658-672. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.03.022
    [7]
    WANG W, LEE H W. An energy kurtosis demodulation technique for signal denoising and bearing fault detection[J]. Measurement Science and Technology, 2013, 24(2): 025601. doi: 10.1088/0957-0233/24/2/025601
    [8]
    邢欣, 崔亚辉, 刘晓琳, 等. 一种自适应提取有效信号的滚动轴承故障诊断方法[J]. 噪声与振动控制, 2018, 38(2): 150-153, 161. doi: 10.3969/j.issn.1006-1355.2018.02.029

    XING Xin, CUI Ya-hui, LIU Xiao-lin, et al. A fault diagnosis method for rolling bearings based on adaptive extraction of effective signals[J]. Noise and Vibration Control, 2018, 38(2): 150-153, 161. (in Chinese) doi: 10.3969/j.issn.1006-1355.2018.02.029
    [9]
    LI Hua, LIU Tao, WU Xing, et al. Enhanced frequency band entropy method for fault feature extraction of rolling element bearings[J]. IEEE Transactions on Industrial Informatics, 2020, 16(9): 5780-5791. doi: 10.1109/TII.2019.2957936
    [10]
    ZHOU Hao-xuan, LI Hua, LIU Tao, et al. A weak fault feature extraction of rolling element bearing based on attenuated cosine dictionaries and sparse feature sign search[J]. ISA Transactions, 2020, 97: 143-154. doi: 10.1016/j.isatra.2019.08.013
    [11]
    牛一捷, 李花, 邓武, 等. 基于TQWT稀疏表示的滚动轴承故障诊断方法[J]. 交通运输工程学报, 2021, 21(6): 237-246. doi: 10.19818/j.cnki.1671-1637.2021.06.018

    NIU Yi-jie, LI Hua, DENG Wu, et al. Rolling bearing fault diagnosis method based on TQWT and sparse representation[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 237-246. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.06.018
    [12]
    张龙, 甄灿壮, 熊国良, 等. 基于深度时频特征的机车轴承故障诊断[J]. 交通运输工程学报, 2021, 21(6): 247-258. doi: 10.19818/j.cnki.1671-1637.2021.06.019

    ZHANG Long, ZHEN Can-zhuang, XIONG Guo-liang, et al. Locomotive bearing fault diagnosis based on deep time-frequency features[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 247-258. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.06.019
    [13]
    袁旻忞, SHEN A, 鲁帆, 等. 高速列车运行工况下噪声传递路径及声源贡献量分析[J]. 振动与冲击, 2013, 32(21): 189-196. doi: 10.3969/j.issn.1000-3835.2013.21.033

    YUAN Min-min, SHEN A, LU Fan, et al. Operational transfer path analysis and noise sources contribution for China railway high-speed (CRH)[J]. Journal of Vibration and Shock, 2013, 32(21): 189-196. (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.21.033
    [14]
    张磊, 李彬, 杨自春, 等. 融合盲源分离的船舶耦合振源传递路径分析技术研究[J]. 振动与冲击, 2020, 39(17): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202017021.htm

    ZHANG Lei, LI Bin, YANG Zi-chun, et al. TPA technique for ship coupled vibration sources based on BSS[J]. Journal of Vibration and Shock, 2020, 39(17): 150-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202017021.htm
    [15]
    WIGGINS R A. Minimum entropy deconvolution[J]. Geoexploration, 1978, 16(1/2): 21-35.
    [16]
    MCDONALD G L, ZHAO Q, ZUO M J. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255. doi: 10.1016/j.ymssp.2012.06.010
    [17]
    夏均忠, 赵磊, 白云川, 等. 基于MCKD和VMD的滚动轴承微弱故障特征提取[J]. 振动与冲击, 2017, 36(20): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201720013.htm

    XIA Jun-zhong, ZHAO Lei, BAI Yun-chuan, et al. Feature extraction for rolling element bearing weak fault based on MCKD and VMD[J]. Journal of Vibration and Shock, 2017, 36(20): 78-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201720013.htm
    [18]
    XU Z, QIN C, TANG G. A novel deconvolution cascaded variational mode decomposition for weak bearing fault detection with unknown signal transmission path[J]. IEEE Sensors Journal, 2021, 21(2): 1746-1755.
    [19]
    向玲, 张力佳. 基于VMD和1. 5维Teager能量谱的滚动轴承故障特征提取[J]. 振动与冲击, 2017, 36(18): 98-104, 124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201718015.htm

    XIANG Ling, ZHANG Li-jia. Rolling bearing fault feature extraction based on the VMD and 1. 5-dimensional Teager energy spectrum[J]. Journal of Vibration and Shock, 2017, 36(18): 98-104, 124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201718015.htm
    [20]
    王望望, 邓林峰, 赵荣珍, 等. 基于二次聚类分割与Teager能量谱的滚动轴承微弱故障特征提取[J]. 振动与冲击, 2020, 39(13): 246-253. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202013036.htm

    WANG Wang-wang, DENG Lin-feng, ZHAO Rong-zhen, et al. Weak fault feature extraction of rolling bearing based on secondary clustering segmentation and Teager energy spectrum[J]. Journal of Vibration and Shock, 2020, 39(13): 246-253. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202013036.htm
    [21]
    唐贵基, 王晓龙. 自适应最大相关峭度解卷积方法及其在轴承早期故障诊断中的应用[J]. 中国电机工程学报, 2015, 35(6): 1436-1444. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201506019.htm

    TANG Gui-ji, WANG Xiao-long. Adaptive maximum correlated kurtosis deconvolution method and its application on incipient fault diagnosis of bearing[J]. Proceedings of the CSEE, 2015, 35(6): 1436-1444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC201506019.htm
    [22]
    杨斌, 张家玮, 樊改荣, 等. 最优参数MCKD与ELMD在轴承复合故障诊断中的应用研究[J]. 振动与冲击, 2019, 38(11): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201911011.htm

    YANG Bin, ZHANG Jia-wei, FAN Gai-rong, et al. Application of MCKD and ELMD in bearing compound fault diagnosis[J]. Journal of Vibration and Shock, 2019, 38(11): 59-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201911011.htm
    [23]
    沈长青, 王旭, 王冬, 等. 基于多尺度卷积类内迁移学习的列车轴承故障诊断[J]. 交通运输工程学报, 2020, 50(5): 151-164. doi: 10.19818/j.cnki.1671-1637.2020.05.012

    SHEN Chang-qing, WANG Xu, WANG Dong, et al. Multi-scale convolution intra-class transfer learning for train bearing fault diagnosis[J]. Journal of Traffic and Transportation Engineering, 2020, 50(5): 151-164. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.012
    [24]
    江星星, 宋秋昱, 朱忠奎, 等. 基于收敛趋势变分模式分解的齿轮箱故障诊断方法[J]. 交通运输工程学报, 2022, 22(1): 177-189. doi: 10.19818/j.cnki.1671-1637.2022.01.015

    JIANG Xing-xing, SONG Qiu-yu, ZHU Zhong-kui, et al. Gearbox fault diagnosis method based on convergent trend-guided variational mode decomposition[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 177-189. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.01.015
    [25]
    YAN Xiao-an, ZHANG Wan, JIA Min-ping. A bearing fault feature extraction method based on optimized singular spectrum decomposition and linear predictor[J]. Measurement Science and Technology, 2021, 32(11): 115023.
    [26]
    WANG Cong, GAN Meng, ZHU Chang-an. Fault feature extraction of rolling element bearings based on wavelet packet transform and sparse representation theory[J]. Journal of Intelligent Manufacturing, 2018, 29(4): 937-951.
    [27]
    WANG Ran, FANG Hai-tao, ZHANG Yong-li, et al. Low-rank enforced fault feature extraction of rolling bearings in a complex noisy environment: a perspective of statistical modeling of noises[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3510414.
    [28]
    ZHANG Wan, YAN Xiao-an, JIA Min-ping. Sparse enhancement based on the total variational denoising for fault feature extraction of rolling element bearings[J]. Measurement, 2022, 195: 111163.
    [29]
    ZHU Dan-chen, CHEN Ji-heng, YIN Bo-long. Fault feature extraction of rolling element bearing based on TPE-EVMD[J]. Measurement, 2021, 183: 109880.
    [30]
    KE Yun, SONG En-zhe, CHEN Yan-zhen, et al. Multiscale bidirectional diversity entropy for diesel injector fault-type diagnosis and fault degree diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 6503410.
    [31]
    WANG Cun-jun, XU Zi-li. An intelligent fault diagnosis model based on deep neural network for few-shot fault diagnosis[J]. Neurocomputing, 2021, 456: 550-562.
    [32]
    HUANG Ting, ZHANG Qiang, TANG Xiao-an, et al. A novel fault diagnosis method based on CNN and LSTM and its application in fault diagnosis for complex systems[J]. Artificial Intelligence Review, 2022, 55(2): 1289-1315.
    [33]
    DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
    [34]
    吴小涛, 杨锰, 袁晓辉, 等. 基于峭度准则EEMD及改进形态滤波方法的轴承故障诊断[J]. 振动与冲击, 2015, 34(2): 38-44. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201502007.htm

    WU Xiao-tao, YANG Meng, YUAN Xiao-hui, et al. Bearing fault diagnosis using EEMD and improved morphological filtering method based on kurtosis criterion[J]. Journal of Vibration and Shock, 2015, 34(2): 38-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201502007.htm
    [35]
    DENG Wu, LIU Hai-long, XU Jun-jie, et al. An improved quantum-inspired differential evolution algorithm for deep belief network[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(10): 7319-7327.
    [36]
    ZHAO Hui-min, LIU Hao-dong, XU Jun-jie, et al. Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 4165-4172.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (442) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return