Volume 23 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
MA Fei, ZHAO Cheng-yong, SUN Qi-peng, CUI Rui-ying, MA Zhuang-lin, ZHU Yu-jie, WANG Zuo-hang. Integrated resilience of urban rail transit network with active passenger flow restriction under major public health disasters[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 208-221. doi: 10.19818/j.cnki.1671-1637.2023.01.016
Citation: MA Fei, ZHAO Cheng-yong, SUN Qi-peng, CUI Rui-ying, MA Zhuang-lin, ZHU Yu-jie, WANG Zuo-hang. Integrated resilience of urban rail transit network with active passenger flow restriction under major public health disasters[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 208-221. doi: 10.19818/j.cnki.1671-1637.2023.01.016

Integrated resilience of urban rail transit network with active passenger flow restriction under major public health disasters

doi: 10.19818/j.cnki.1671-1637.2023.01.016
Funds:

National Natural Science Foundation of China 72104034

National Social Science Foundation of China 18BGL258

Natural Science Basic Research Program of Shaanxi Province 2022JM-423

Social Science Planning Fund Project of Xi'an 22GL89

More Information
  • Author Bio:

    MA Fei(1979-), male, professor, PhD, mafeixa@chd.edu.cn

  • Received Date: 2022-11-05
    Available Online: 2023-03-08
  • Publish Date: 2023-02-25
  • The influencing mechanism of major public health disasters on the integrated resilience of urban rail transit network was analyzed. The traditional resilience measurement method was modified by the resilience curve model, and an integrated resilience measurement method was constructed for the urban rail transit network affected by major public health disasters. The importance levels of urban rail transit network nodes were evaluated. A topological model of urban rail transit network was constructed by the complex network approach to simulate and assign the nodal passenger flow. The SEZIR infectious disease spread model was applied to simulate the spread process of disaster, and the evolution laws of the integrated resilience level of urban rail transit in the context of a major public health disaster were studied. The process of epidemic development in Xi'an was taken as the research object, the integrated resilience level of the urban rail transit network under active passenger flow constraints was simulated and numerically analyzed. Research results show that the ability of the urban rail transit network to interrupt the spread of major public health disasters can be effectively enhanced by active passenger flow restriction measures. The spread process of major public health disasters becomes gentle after the restriction level of passenger flow reaches 30%. Active passenger flow restriction measures are able to directly reduce the operational efficiency of the urban rail transit network, but the integrated resilience level of the urban rail transit network under the influence of major public health disasters can be improved. The improvement of integrated resilience level of the urban rail transit network is more significant when the passenger flow restriction level is 70%, 40%, and 20%, and the cumulative improvement is 10.73%, 46.87%, and 226.81%, respectively.

     

  • loading
  • [1]
    赵瑞东, 方创琳, 刘海猛. 城市韧性研究进展与展望[J]. 地理科学进展, 2020, 39(10): 1717-1731. doi: 10.18306/dlkxjz.2020.10.011

    ZHAO Rui-dong, FANG Chuang-lin, LIU Hai-meng. Progress and prospect of urban resilience research[J]. Progress in Geography, 2020, 39(10): 1717-1731. (in Chinese) doi: 10.18306/dlkxjz.2020.10.011
    [2]
    杨秀平, 王里克, 李亚兵, 等. 韧性城市研究综述与展望[J]. 地理与地理信息科学, 2021, 37(6): 78-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT202106012.htm

    YANG Xiu-ping, WANG Li-ke, LI Ya-bing, et al. Review and prospects of resilient city theory[J]. Geography and Geo-Information Science, 2021, 37(6): 78-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT202106012.htm
    [3]
    TWUMASI-BOAKYE R, SOBANJO J O. Resilience of regional transportation networks subjected to hazard-induced bridge damages[J]. Journal of Transportation Engineering, Part A: Systems, 2018, 144(10): 04018062. doi: 10.1061/JTEPBS.0000186
    [4]
    刘振国, 姜彩良, 王显光, 等. 基于系统韧性提升交通运输疫情防控与应急保障能力对策[J]. 交通运输研究, 2020, 6(1): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH202001004.htm

    LIU Zhen-guo, JIANG Cai-liang, WANG Xian-guang, et al. Countermeasures to improve epidemic prevention and control and emergency support capacity of transportation based on system resilience[J]. Transport Research, 2020, 6(1): 19-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTBH202001004.htm
    [5]
    MURRAY-TUITE P M. A comparison of transportation network resilience under simulated system optimum and user equilibrium conditions[C]//IEEE. Proceedings of the 2006 Winter Simulation Conference. New York: IEEE, 2006: 1398-1405.
    [6]
    ZHANG X G, MAHADEVAN S, SANKARARAMAN S, et al. Resilience-based network design under uncertainty[J]. Reliability Engineering and System Safety, 2018, 169: 364-379. doi: 10.1016/j.ress.2017.09.009
    [7]
    LIAO T Y, HU T Y, KO Y N. A resilience optimization model for transportation networks under disasters[J]. Natural Hazards, 2018, 93(1): 469-489. doi: 10.1007/s11069-018-3310-3
    [8]
    薛锋, 何传磊, 黄倩. 成都地铁网络的关键节点识别方法及性能分析[J]. 中国安全科学学报, 2019, 29(1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201901016.htm

    XUE Feng, HE Chuan-lei, HUANG Qian. Identification of key nodes in Chengdu metro network and analysis of network performance[J]. China Safety Science Journal, 2019, 29(1): 93-99. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201901016.htm
    [9]
    沈犁, 张殿业, 向阳, 等. 城市地铁-公交复合网络抗毁性与级联失效仿真[J]. 西南交通大学学报, 2018, 53(1): 156-163, 196. doi: 10.3969/j.issn.0258-2724.2018.01.019

    SHEN Li, ZHANG Dian-ye, XIANG Yang, et al. Simulation on survivability and cascading failure propagation of urban subway-bus compound network[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 156-163, 196. (in Chinese) doi: 10.3969/j.issn.0258-2724.2018.01.019
    [10]
    MA F, LIU F, YUEN K F, et al. Cascading failures and vulnerability evolution in bus-metro complex bilayer networks under rainstorm weather conditions[J]. International Journal of Environmental Research and Public Health, 2019, 16(3): 329. doi: 10.3390/ijerph16030329
    [11]
    张琳, 陆建, 雷达. 基于复杂网络和空间信息嵌入的常规公交-地铁复合网络脆弱性分析[J]. 东南大学学报(自然科学版), 2019, 49(4): 773-780. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201904022.htm

    ZHANG Lin, LU Jian, LEI Da. Vulnerability analysis of bus-metro composite network based on complex network and spatial information embedding[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(4): 773-780. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201904022.htm
    [12]
    马超群, 张爽, 陈权, 等. 客流特征视角下的轨道交通网络特征及其脆弱性[J]. 交通运输工程学报, 2020, 20(5): 208-216. doi: 10.19818/j.cnki.1671-1637.2020.05.017

    MA Chao-qun, ZHANG Shuang, CHEN Quan, et al. Characteristics and vulnerability of rail transit network based on perspective of passenger flow characteristics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 208-216. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.017
    [13]
    王志如, 李启明, 梁作论. 城市地铁网络拓扑结构脆弱性评价[J]. 中国安全科学学报, 2013, 23(8): 114-119. doi: 10.3969/j.issn.1003-3033.2013.08.019

    WANG Zhi-ru, LI Qi-ming, LIANG Zuo-lun. Evaluation of urban metro network topological structure vulnerability[J]. China Safety Science Journal, 2013, 23(8): 114-119. (in Chinese) doi: 10.3969/j.issn.1003-3033.2013.08.019
    [14]
    D'LIMA M, MEDDA F. A new measure of resilience: an application to the London underground[J]. Transportation Research Part A: Policy and Practice, 2015, 81: 35-46. doi: 10.1016/j.tra.2015.05.017
    [15]
    ZHANG X, MILLER-HOOKS E, DENNY K. Assessing the role of network topology in transportation network resilience[J]. Journal of Transport Geography, 2015, 46: 35-45. doi: 10.1016/j.jtrangeo.2015.05.006
    [16]
    ZHANG Dong-ming, DU Fei, HUANG Hong-wei, et al. Resiliency assessment of urban rail transit networks: Shanghai metro as an example[J]. Safety Science, 2018, 106: 230-243. doi: 10.1016/j.ssci.2018.03.023
    [17]
    王秋玲, 柯宇昊, 高诣民, 等. 灾害时空属性下高铁时序网络韧性分析[J]. 西安电子科技大学学报, 2022, 49(4): 156-166. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD202204018.htm

    WANG Qiu-ling, KE Yu-hao, GAO Yi-min, et al. Analysis of resilience of the high-speed rail temporal network under disaster temporal and spatial attributes[J]. Journal of Xidian University, 2022, 49(4): 156-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD202204018.htm
    [18]
    唐少虎, 朱伟, 程光, 等. 暴雨内涝下城市道路交通系统安全韧性评估[J]. 中国安全科学学报, 2022, 32(7): 143-150. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202207021.htm

    TANG Shao-hu, ZHU Wei, CHENG Guang, et al. Safety resilience assessment of urban road traffic system under rainstorm waterlogging[J]. China Safety Science Journal, 2022, 32(7): 143-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202207021.htm
    [19]
    李浩然, 王子恒, 杨起帆, 等. 复杂网络下地铁灾害链演化模型与风险分析[J]. 中国安全科学学报, 2021, 31(11): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202111021.htm

    LI Hao-ran, WANG Zi-heng, YANG Qi-fan, et al. Evolutionary model and risk analysis of metro disaster chain under complex network[J]. China Safety Science Journal, 2021, 31(11): 141-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202111021.htm
    [20]
    光志瑞, 权经超, 党彤彤, 等. 常态化疫情防控下节假日客流特征及策略研究[J]. 都市快轨交通, 2022, 35(5): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG202205009.htm

    GUANG Zhi-rui, QUAN Jing-chao, DANG Tong-tong, et al. Characteristics and optimization of holiday passenger flow in urban rail transit subject to coronavirus prevention and control measures[J]. Urban Rapid Rail Transit, 2022, 35(5): 56-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DSKG202205009.htm
    [21]
    崔巍, 郝立宁, 木仁, 等. COVID-19疫情下一种新的地铁平峰运营策略[J]. 中国管理科学, 2022, 30(11): 321-332. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK202211030.htm

    CUI Wei, HAO Li-ning, MU Ren, et al. A new balance strategy of urban subway operation under the COVID-19 epidemic[J]. Chinese Journal of Management Science, 2022, 30(11): 321-332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGK202211030.htm
    [22]
    刘斌, 丁波, 赵萌萌, 等. 新型冠状病毒肺炎疫情防控期间武汉地铁客运管理措施分析[J]. 城市轨道交通研究, 2020, 23(10): 5-9. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202010003.htm

    LIU Bin, DING Bo, ZHAO Meng-meng, et al. Analysis of Wuhan metro passenger transport management measures during the period of COVID-19 prevention and control[J]. Urban Mass Transit, 2020, 23(10): 5-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202010003.htm
    [23]
    何坚, 姜美利, 刘建荣. 疫情对地铁车站拥挤度评价的影响[J]. 南方建筑, 2021(2): 146-150. https://www.cnki.com.cn/Article/CJFDTOTAL-NFJZ202102022.htm

    HE Jian, JIANG Mei-li, LIU Jian-rong. The impacts of COVID-19 on congestion evaluation of metro station[J]. South Architecture, 2021(2): 146-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NFJZ202102022.htm
    [24]
    NAN C, SANSAVINI G. A quantitative method for assessing resilience of interdependent infrastructures[J]. Reliability Engineering and System Safety, 2017, 157: 35-53.
    [25]
    李瑞奇, 黄弘, 周睿. 基于韧性曲线的城市安全韧性建模[J]. 清华大学学报(自然科学版), 2020, 60(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202001001.htm

    LI Rui-qi, HUANG Hong, ZHOU Rui. Resilience curve modelling of urban safety resilience[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202001001.htm
    [26]
    黄莺, 刘梦茹, 魏晋果, 等. 基于韧性曲线的城市地铁网络恢复策略研究[J]. 灾害学, 2021, 36(1): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202101007.htm

    HUANG Ying, LIU Meng-ru, WEI Jin-guo, et al. Research on urban metro network recovery strategy based on resilience curve[J]. Journal of Catastrophology, 2021, 36(1): 32-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202101007.htm
    [27]
    吕彪, 高自强, 刘一骝. 道路交通系统韧性及路段重要度评估[J]. 交通运输系统工程与信息, 2020, 20(2): 114-121. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202002018.htm

    LYU Biao, GAO Zi-qiang, LIU Yi-liu. Evaluation of road transportation system resilience and link importance[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 114-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202002018.htm
    [28]
    贾兴利, 周吴啸, 韩兴家, 等. 交通管控措施对市域新冠疫情传播的阻断效果分析[J]. 中国公路学报, 2022, 35(1): 252-262. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201022.htm

    JIA Xing-li, ZHOU Wu-xiao, HAN Xing-jia, et al. Blocking effects of traffic control measures on COVID-19 transmission in city territories[J]. China Journal of Highway and Transport, 2022, 35(1): 252-262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201022.htm
    [29]
    段佳勇, 郑宏达. 基于节点重要度的复杂网络脆弱性分析方法[J]. 控制工程, 2020, 27(4): 692-696. https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202004017.htm

    DUAN Jia-yong, ZHENG Hong-da. Vulnerability analysis method for complex networks based on node importance[J]. Control Engineering of China, 2020, 27(4): 692-696. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZDF202004017.htm
    [30]
    耿辉, 徐安定, 王晓艳, 等. 基于SEIR模型分析相关干预措施在新型冠状病毒肺炎疫情中的作用[J]. 暨南大学学报(自然科学与医学版), 2020, 41(2): 175-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JNDX202002012.htm

    GENG Hui, XU An-ding, WANG Xiao-yan, et al. Analysis of the role of current prevention and control measures in the epidemic of corona virus disease 2019 based on SEIR model[J]. Journal of Jinan University (Natural Science and Medicine Edition), 2020, 41(2): 175-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JNDX202002012.htm
    [31]
    TANG B, WANG X, LI Q, et al. Estimation of the transmission risk of 2019-nCoV and its implication for public health interventions[J]. Journal of Clinical Medicine, 2020, 9(2): 462.
    [32]
    徐娟年, 马冉, 赵中睿, 等. 山东省新型冠状病毒肺炎疫情流行趋势初步预测[J]. 重庆师范大学学报(自然科学版), 2020, 37(2): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF202002016.htm

    XU Juan-nian, MA Ran, ZHAO Zhong-rui, et al. Preliminary prediction of the epidemic tendency of 2019 novel coronavirus pneumonia in Shandong province[J]. Journal of Chongqing Normal University(Natural Science Edition), 2020, 37(2): 101-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF202002016.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (447) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return