Volume 23 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
ZHANG Hong-hai, LYU Wen-ying, WAN Jun-qiang, YANG Lei. Network modeling and evolution characteristics for air traffic risk situation in sectors[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 222-241. doi: 10.19818/j.cnki.1671-1637.2023.01.017
Citation: ZHANG Hong-hai, LYU Wen-ying, WAN Jun-qiang, YANG Lei. Network modeling and evolution characteristics for air traffic risk situation in sectors[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 222-241. doi: 10.19818/j.cnki.1671-1637.2023.01.017

Network modeling and evolution characteristics for air traffic risk situation in sectors

doi: 10.19818/j.cnki.1671-1637.2023.01.017
Funds:

National Key Research and Development Program of China 2018YFE0208700

National Natural Science Foundation of China 71971114

More Information
  • Author Bio:

    ZHANG Hong-hai(1979-), male, professor, PhD, zhh0913@163.com

  • Received Date: 2022-08-25
    Available Online: 2023-03-08
  • Publish Date: 2023-02-25
  • To accurately capture the air traffic operation situation in the airspace and improve the operation efficiency of flight, the methods of network modeling for air traffic risk situation in sectors and its evolution characteristics were studied. The feasibility and effectiveness of the methods were verified based on the measured data. In the sectors, active aircrafts were abstracted as nodes, and the edges were established based on the conflict relationship under their position deviations to help build the air traffic situation network. The aircraft clusters were defined and detected by using the concept of connected components within the network. The state vector was established based on the characteristics of aircraft clusters to further classify the risk patterns of air traffic. On the basis of the classified time sequence of situation class, the duration sample for each pattern was analyzed and modelled. The survival characteristics for a single pattern and the preference level of transition among multiple patterns were discussed. To verify the validity of the proposed method, the data about Guangzhou control sector AR05 were used as the sample for analysis. Analysis results show that the survival characteristics of the low risk to high risk pattern differ significantly with mean life cycles of 82.49, 118.11, 75.77 and 90.51 s, respectively. Among them the medium risk pattern is the one with the longest estimated life cycle and the highest survival rate. In the process of pattern transition, the risk patterns with relatively simple and smaller size of clusters mainly show a higher forward accessibility, while the backward and leap probabilities are lower than 0.05. The more complex ones show more obvious backward transition behavior, and the probabilities gradually stabilize with increasing time steps (30, 60, 90 and 120 s). So, the established network model can well reflect the information on the risk situation of air traffic, and the proposed evolution analysis method can give valuable insights into air traffic operation, thus identifying the scientific laws of air traffic evolution.

     

  • loading
  • [1]
    武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38(增1): 721473. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2017S1015.htm

    WU Xi-ping, YANG Hong-yu, HAN Song-chen. Analysis of properties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1): 721473. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB2017S1015.htm
    [2]
    赵嶷飞, 肖瞳瞳, 万俊强. 中国民航空中交通管制体制演化[J]. 交通运输工程学报, 2020, 20(2): 100-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002009.htm

    ZHAO Yi-fei, XIAO Tong-tong, WAN Jun-qiang. Evolution of air traffic control system of Chinese civil aviation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 100-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002009.htm
    [3]
    朱永文, 陈志杰, 蒲钒, 等. 数字化空域系统发展研究[J]. 中国工程科学, 2021, 23(3): 135-143. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202103020.htm

    ZHU Yong-wen, CHEN Zhi-jie, PU Fan, et al. Development of digital airspace system[J]. Strategic Study of CAE, 2021, 23(3): 135-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202103020.htm
    [4]
    杨红雨, 杨波, 武喜萍, 等. 智能化空管技术研究与展望[J]. 工程科学与技术, 2018, 50(4): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201804002.htm

    YANG Hong-yu, YANG Bo, WU Xi-ping, et al. Research and prospect of intellectualized air traffic management technology[J]. Advanced Engineering Sciences, 2018, 50(4): 12-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201804002.htm
    [5]
    YANG Lei, YIN Su-wan, HU Ming-hua, et al. Empirical exploration of air traffic and human dynamics in terminal airspaces[J]. Transportation Research Part C: Emerging Technologies, 2017, 84: 219-244. doi: 10.1016/j.trc.2017.08.007
    [6]
    ZHANG Hong-hai, JIANG Cheng-peng, YANG Lei. Forecasting traffic congestion status in terminal areas based on support vector machine[J]. Advances in Mechanical Engineering, 2016, 8(9): 168781401666738.
    [7]
    张洪海, 廖志华, 张启钱, 等. 终端区空域结构调整对进场交通流的影响[J]. 交通运输工程学报, 2016, 16(2): 100-108. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201602013.htm

    ZHANG Hong-hai, LIAO Zhi-hua, ZHANG Qi-qian, et al. Impact of adjusting airspace structure on arrival traffic flow in terminal area[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 100-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201602013.htm
    [8]
    张晨. 空中交通管理中的交通行为复杂性研究[D]. 南京: 南京航空航天大学, 2012.

    ZHANG Chen. Research on the complexity of the traffic behaviors in air traffic management[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [9]
    DELAHAYE D, PUECHMOREL S, HANSMAN J, et al. Air traffic complexity map based on non-linear dynamical system[J]. Air Traffic Control Quarterly, 2004, 12(4): 367-388.
    [10]
    LI Shan-mei, XU Xiao-hao, MENG Ling-hang. Flight conflict forecasting based on chaotic time series[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2012, 29(4): 388-394.
    [11]
    LYU Wen-ying, ZHANG Hong-hai, WAN Jun-qiang, et al. Research on safety prediction of sector traffic operation based on a long short-term memory model[J]. Applied Sciences, 2021, 11: 5141.
    [12]
    徐永祥. 扇区冲突风险评估方法研究[D]. 天津: 中国民航大学, 2015.

    XU Yong-xiang. Research on evaluation method of sector conflict risk[D]. Tianjin: Civil Aviation University of China, 2015. (in Chinese)
    [13]
    张进, 胡明华, 张晨, 等. 空域复杂性建模[J]. 南京航空航天大学学报, 2010, 42(4): 454-460. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201004012.htm

    ZHANG Jin, HU Ming-hua, ZHANG Chen, et al. Airspace complexity modeling[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2010, 42(4): 454-460. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-NJHK201004012.htm
    [14]
    LU Fei, CHEN Zi-chen, CHEN Hui-yu. Lateral collision risk assessment of parallel routes in ocean area based on space-based ADS-B[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102970.
    [15]
    赵嶷飞, 徐永祥, 王红勇. 基于航迹误差的空中交通冲突风险计算方法研究[J]. 安全与环境学报, 2016, 16(3): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201603005.htm

    ZHAO Yi-fei, XU Yong-xiang, WANG Hong-yong. On the air traffic conflict risk calculation method based on the track deviation study[J]. Journal of Safety and Environment, 2016, 16(3): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201603005.htm
    [16]
    王红勇, 温瑞英. 基于复杂网络的空中交通态势风险评估方法[J]. 中国安全科学学报, 2018, 28(5): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201805029.htm

    WANG Hong-yong, WEN Rui-ying. Research on assessment of risk in air traffic situation based on complex network[J]. China Safety Science Journal, 2018, 28(5): 172-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201805029.htm
    [17]
    ZANIN M. Network analysis reveals patterns behind air safety events[J]. Physica A: Statistical Mechanics and Its Applications, 2014, DOI: 10.1016/j.physa.2014.01.032.
    [18]
    WANG Hong-yong, SONG Zi-qi, WEN Rui-ying, et al. Study on evolution characteristics of air traffic situation complexity based on complex network theory[J]. Aerospace Science and Technology, 2016, 58: 518-528.
    [19]
    WANG Hong-yong, XU Xiao-hao, ZHAO Yi-fei. Empirical analysis of aircraft clusters in air traffic situation networks[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, DOI: 10.1177/0954410016660870.
    [20]
    WANG Hong-yong, WEN Rui-ying, ZHAO Yi-fei. Analysis of topological characteristics in air traffic situation networks[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, DOI: 10.1177/0954410015578482.
    [21]
    WEN Xiang-xi, TU Cong-liang, WU Ming-gong, et al. Fast ranking nodes importance in complex networks based on LS-SVM method[J]. Physica A: Statistical Mechanics and Its Applications, 2018, DOI: 10.1016/j.physa.2018.03.076.
    [22]
    李佳威, 吴明功, 温祥西, 等. 基于最小连通支配集的复杂网络关键节点与连边识别方法[J]. 系统工程与电子技术, 2019, 41(11): 2541-2549. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201911018.htm

    LI Jia-wei, WU Ming-gong, WEN Xiang-xi, et al. Identifying key nodes and edges of complex networks based on the minimum connected dominating set[J]. Systems Engineering and Electronics, 2019, 41(11): 2541-2549. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD201911018.htm
    [23]
    WANG Ze-kun, WEN Xiang-xi, WU Ming-gong. Identification of key nodes in aircraft state network based on complex network theory[J]. IEEE Access, 2019, DOI: 10.1109/ACCESS.2019.2915508.
    [24]
    李昂, 聂党民, 温祥西, 等. 基于相依网络和SVM的管制系统运行态势评估[J]. 系统工程与电子技术, 2021, 43(5): 1287-1294. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202105017.htm

    LI Ang, NIE Dang-min, WEN Xiang-xi, et al. Operation situation assessment of control system based on interdependent network and SVM[J]. Systems Engineering and Electronics, 2021, 43(5): 1287-1294. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202105017.htm
    [25]
    JIANG Xu-rui, WEN Xiang-xi, WU Ming-gong, et al. A complex network analysis approach for identifying air traffic congestion based on independent component analysis[J]. Physica A: Statistical Mechanics and Its Applications, 2019, DOI: 10.1016/j.physa.2019.01.129.
    [26]
    张洪海, 汤一文, 许炎. TBO模式下终端区进场交通流优化模型与仿真分析[J]. 航空学报, 2020, 41(7): 325-338. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202007028.htm

    ZHANG Hong-hai, TANG Yi-wen, XU Yan. Optimizing arrival traffic flow in airport terminal airspace under trajectory based operations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 325-338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202007028.htm
    [27]
    International Civil Aviation Organization. Performance based navigation manual[R]. Montréal: International Civil Aviation Organization, 2008.
    [28]
    BARABASI A L. Scale-free networks: a decade and beyond[J]. Science, 2009, 325(5939): 412-413.
    [29]
    DENG Zheng-hong, QIAO Hong-hai, GAO Ming-yu, et al. Complex network community detection method by improved density peaks model[J]. Physica A: Statistical Mechanics and Its Applications, 2019, DOI: 10.1016/j.physa.2019.121070.
    [30]
    骆志刚, 丁凡, 蒋晓舟, 等. 复杂网络社团发现算法研究新进展[J]. 国防科技大学学报, 2011, 33(1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201101012.htm

    LUO Zhi-gang, DING Fan, JIANG Xiao-zhou, et al. New progress on community detection in complex networks[J]. Journal of National University of Defense Technology, 2011, 33(1): 47-52. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GFKJ201101012.htm
    [31]
    杨晓波, 陈楚湘, 王至婉. 基于节点相似性的LFM社团发现算法[J]. 复杂系统与复杂性科学, 2017, 14(3): 85-90. https://www.cnki.com.cn/Article/CJFDTOTAL-FZXT201703008.htm

    YANG Xiao-bo, CHEN Chu-xiang, WANG Zhi-wan. LFM community detection algorithm based on vertex similarity[J]. Complex Systems and Complexity Science, 2017, 14(3): 85-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FZXT201703008.htm
    [32]
    陈晶, 万云. 社交网络中基于模块度最大化的标签传播算法的研究[J]. 通信学报, 2017, 38(2): 25-33. https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201702004.htm

    CHEN Jing, WAN Yun. Research on label propagation algorithm based on modularity maximization in the social network[J]. Journal on Communications, 2017, 38(2): 25-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201702004.htm
    [33]
    牛新征, 牛嘉郡, 苏大壮, 等. 基于加权内容-结构网络和随机游走的社团划分算法[J]. 电子学报, 2017, 45(9): 2135-2142. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201709012.htm

    NIU Xin-zheng, NIU Jia-jun, SU Da-zhuang, et al. Community detection based on weighted content-structural network and random walks[J]. Acta Electronica Sinica, 2017, 45(9): 2135-2142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXU201709012.htm
    [34]
    HECKMANN T, SCHWANGHART W, PHILLIPS J D. Graph theory—recent developments of its application in geomorphology[J]. Geomorphology, 2015, DOI: 10.1016/j.geomorph.2014.12.024.
    [35]
    周红芳, 周扬, 张晓鹏, 等. 基于连通分量的分类变量聚类算法[J]. 控制与决策, 2015, 30(1): 39-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201501006.htm

    ZHOU Hong-fang, ZHOU Yang, ZHANG Xiao-peng, et al. A clustering algorithm for categorical variables based on connected components[J]. Control and Decision, 2015, 30(1): 39-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201501006.htm
    [36]
    凤少伟, 凤超, 申浩. 基于K-means与GRU的短时交通流预测研究[J]. 计算机技术与发展, 2020, 30(7): 125-129. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202007028.htm

    FENG Shao-wei, FENG Chao, SHEN Hao. Research on short-term traffic flow prediction based on K-means and GRU[J]. Computer Technology and Development, 2020, 30(7): 125-129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ202007028.htm
    [37]
    LE Q A. Structural uncertainty of Markov models for advanced breast cancer: a simulation study of lapatinib[J]. Medical Decision Making, 2016, DOI: 10.1177/0272989X15622643.
    [38]
    GUYOT P, ADES A E, OUWENS M J N M, et al. Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves[J]. BMC Medical Research Methodology, 2012, DOI: 10.1186/1471-2288-12-9.
    [39]
    PETO R, PETO J. Asymptotically efficient rank invariant test procedures[J]. Journal of the Royal Statistical Society, Series A, 1972, DOI: 10.2307/2344317.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (378) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return