Volume 23 Issue 1
Feb.  2023
Turn off MathJax
Article Contents
LI Zhong-qi, ZHOU Liang, YANG Hui, YE Mei-han. Iterative learning control method for EMUs based on predictive control[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 280-290. doi: 10.19818/j.cnki.1671-1637.2023.01.021
Citation: LI Zhong-qi, ZHOU Liang, YANG Hui, YE Mei-han. Iterative learning control method for EMUs based on predictive control[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 280-290. doi: 10.19818/j.cnki.1671-1637.2023.01.021

Iterative learning control method for EMUs based on predictive control

doi: 10.19818/j.cnki.1671-1637.2023.01.021
Funds:

National Natural Science Foundation of China 52162048

National Natural Science Foundation of China 61991404

National Natural Science Foundation of China 62003138

National Key Research and Development Program of China 2020YFB1713703

Jiangxi Provincial Program for Academic and Technical Leaders Training of Major Disciplines 20213BCJ22002

More Information
  • Author Bio:

    LI Zhong-qi(1975-), male, professor, PhD, lzq0828@163.com

    YANG Hui(1965-), male, professor, PhD, yhshuo@263.net

  • Received Date: 2022-08-28
    Available Online: 2023-03-08
  • Publish Date: 2023-02-25
  • Addressing the issues of nonlinear disturbance and time-varying parameters in the operation of electric multiple units (EMUs), an iterative learning control method for EMUs based on the predictive control was proposed to improve the speed tracking accuracy and passenger comfort requirements of EMUs. By collecting the input and output data from the previous operation of the EMUs, the least square method with a forgetting factor was used to identify the parameters of the predictive model in the generalized predictive control (GPC) in real time and calculate the predicted output. The predicted output was corrected based on the average model error from the previous process, and the iterative learning control law was derived from the corrected predicted output. The new control quantity was calculated in real time through the online calculation to realize the speed tracking of the EMUs. The modified predictive output was adopted to design the quadratic iterative learning control law. The problems of difficult parameter tuning, slow convergence speed and poor robustness of the traditional proportional integral differential (PID) iterative learning were solved by fully learning the repetitive characteristics of the train system. In addition, the convergence proof of the algorithm was provided. The proposed method was tested using the semi-physical simulation platform of CRH380A EMUs equipped in the laboratory. A three-power unit model of the train was established to track the set speed curve, and a comparison was made with some traditional algorithms. Simulation results show that in the eighth iteration process, the iterative learning control method for high-speed EMUs based on the predictive control achieves the power unit speed and acceleration errors within 0.3 km·h-1 and 0.5 m·s-2, respectively, and the changes are stable. Its performance is better than PID, GPC and proportional iterative learning control (P-ILC), and meets the requirements of train tracking accuracy and passenger comfort. In the case of sudden changes in model parameters, the proposed method can enable the train to timely correct the uncertainties caused by the model mismatch, time-variation and interference.

     

  • loading
  • [1]
    谢国, 张丹, 黑新宏, 等. 高速列车纵向动力学模型时变参数在线辨识方法[J]. 交通运输工程学报, 2017, 17(1): 71-81. doi: 10.3969/j.issn.1671-1637.2017.01.009

    XIE Guo, ZHANG Dan, HEI Xin-hong, et al. Online identification method of time-varying parameters for longitudinal dynamics model of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2017, 17(1): 71-81. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.01.009
    [2]
    何之煜, 徐宁. 非参数化迭代学习控制的列车自动驾驶控制算法[J]. 铁道学报, 2020, 42(12): 90-96. doi: 10.3969/j.issn.1001-8360.2020.12.012

    HE Zhi-yu, XU Ning. Research on automatic train operation algorithm based on non-parametric iterative learning control[J]. Journal of the China Railway Society, 2020, 42(12): 90-96. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.12.012
    [3]
    张淼, 张琦, 刘文韬, 等. 一种基于策略梯度强化学习的列车智能控制方法[J]. 铁道学报, 2020, 42(1): 69-75. doi: 10.3969/j.issn.1001-8360.2020.01.010

    ZHANG Miao, ZHANG Qi, LIU Wen-tao, et al. A policy-based reinforcement learning algorithm for intelligent train control[J]. Journal of the China Railway Society, 2020, 42(1): 69-75. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.01.010
    [4]
    王明主. 基于模糊自适应PID的重载列车辅助驾驶策略研究[D]. 北京: 北京交通大学, 2019.

    WANG Ming-zhu. Research on assistant driving strategy of heavy haul train based on fuzzy adaptive PID[D]. Beijing: Beijing Jiaotong University, 2019. (in Chinese)
    [5]
    李中奇, 许健. 基于改进模糊PID-Smith控制器的高速动车组停车方法[J]. 交通运输工程学报, 2020, 20(4): 145-154. doi: 10.19818/j.cnki.1671-1637.2020.04.011

    LI Zhong-qi, XU Jian. High-speed EMU parking method based on improved fuzzy PID-Smith controller[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 145-154. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.011
    [6]
    GOU Lin-feng, ZHOU Zi-han, SHEN Ya-wen, et al. Predictive control of turbofan engine model based on improved Elman neural network[C]//FU Min-yue, SUN Jian. Proceedings of the 38th China Control Conference. Shanghai: Shanghai Systems Science Press, 2019: 1311-1316.
    [7]
    杨辉, 张芳, 张坤鹏, 等. 基于分布式模型的动车组预测控制方法[J]. 自动化学报, 2014, 40(9): 1912-1921. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201409010.htm

    YANG Hui, ZHANG Fang, ZHANG Kun-peng, et al. Predictive control using a distributed model for electric multiple unit[J]. Acta Automatica Sinica, 2014, 40(9): 1912-1921. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201409010.htm
    [8]
    杨辉, 张坤鹏, 王昕, 等. 高速列车多模型广义预测控制方法[J]. 铁道学报, 2011, 33(8): 80-87. doi: 10.3969/j.issn.1001-8360.2011.08.014

    YANG Hui, ZHANG Kun-peng, WANG Xin, et al. Generalized multiple model predictive control method of high-speed train[J]. Journal of the China Railway Society, 2011, 33(8): 80-87. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.08.014
    [9]
    李中奇, 杨振村, 杨辉, 等. 高速列车双自适应广义预测控制方法[J]. 中国铁道科学, 2015, 36(6): 120-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201506018.htm

    LI Zhong-qi, YANG Zhen-cun, YANG Hui, et al. Generalized predictive control with dual adaptation method of high-speed train[J]. China Railway Science, 2015, 36(6): 120-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201506018.htm
    [10]
    GAO Shi-gen, WEI Jin, SONG Hai-feng, et al. Fuzzy adaptive automatic train operation control with protection constraints: a residual nonlinearity approximation-based approach[J]. Engineering Applications of Artificial Intelligence, 2020, 96(2): 103986.
    [11]
    王龙生. 基于多质点模型的高速列车自动驾驶预测控制[D]. 北京: 北京交通大学, 2016.

    WANG Long-sheng. Predictive control for automatic operation of high-speed trains based on multi-point model[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [12]
    SUN He-qing, HOU Zhong-sheng, TANG Tao. An iterative learning approach for train trajectory tracking control[J]. IFAC Proceedings Volumes, 2011, 44(1): 14916-14921. doi: 10.3182/20110828-6-IT-1002.01270
    [13]
    WANG Yi, HOU Zhong-sheng, LI Xing-yi. A novel automatic train operation algorithm based on iterative learning control theory[C]//IEEE. 2008 IEEE International Conference on Service Operations and Logistics, and Informatics. New York: IEEE, 2008: 1766-1770.
    [14]
    段莉. 数据驱动迭代学习控制及在列车自动驾驶控制系统中的应用[D]. 北京: 北京交通大学, 2020.

    DUAN Li. Data-based iterative learning control with applications in automatic train operation[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
    [15]
    何之煜. 自适应迭代学习控制在列车自动驾驶系统中的应用[D]. 北京: 中国铁道科学研究院, 2019.

    HE Zhi-yu. Applications in automatic train operation system with adaptive iterative learning control[D]. Beijing: China Academy of Railway Sciences, 2019. (in Chinese)
    [16]
    余琼霞. 迭代学习辨识与控制及在高速列车运行控制系统中的应用[D]. 北京: 北京交通大学, 2017.

    YU Qiong-xia. Iterative learning identification and control with applications in high-speed train operation control system[D]. Beijing: Beijing Jiaotong University, 2017. (in Chinese)
    [17]
    李中奇. 高速动车组自适应速度跟踪控制[D]. 南昌: 南昌大学, 2015.

    LI Zhong-qi. Adaptive speed tracking control for high-speed EMU[D]. Nanchang: Nanchang University, 2015. (in Chinese)
    [18]
    耿睿, 李中奇, 杨辉. 动车组的多变量非线性预测控制研究[J]. 华东交通大学学报, 2021, 38(2): 61-66, 142. https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202102009.htm

    GENG Rui, LI Zhong-qi, YANG Hui. Multivariable nonlinear predictive control of EMU[J]. Journal of East China Jiaotong University, 2021, 38(2): 61-66, 142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT202102009.htm
    [19]
    ZHAO Ji-peng, TONG Shao-cheng, LI Yong-ming. Observer- based fuzzy adaptive control for MIMO nonlinear systems with non-constant control gain and input delay[J]. IET Control Theory and Applications, 2021, 15(11): 1488-1505. doi: 10.1049/cth2.12138
    [20]
    樊雷. 基于广义预测控制的迭代学习算法在间歇过程中的应用[D]. 杭州: 浙江大学, 2006.

    FAN Lei. Research on iterative learning control and its application on batch process based on generalized predictive control[D]. Hangzhou: Zhejiang University, 2006. (in Chinese)
    [21]
    BU Xu-hui, YU Wei, YU Qiong-xia, et al. Event-triggered model-free adaptive iterative learning control for a class of nonlinear systems over fading channels[J]. IEEE Transactions on Cybernetics, 2022, 52(9): 9597-9608.
    [22]
    WANG Deng-feng, XIE Chong, WANG Shuang. An adaptive RBF neural network-based multi-objective optimization method for lightweight and crashworthiness design of cab floor rails using fuzzy subtractive clustering algorithm[J]. Structural and Multidisciplinary Optimization, 2021, 63(2): 915-928.
    [23]
    DAI Ming-guang, QI Rong, ZHAO Yi-yun, et al. PD-type iterative learning control with adaptive learning gains for high-performance load torque tracking of electric dynamic load simulator[J]. Electronics, 2021, 10(7): 811.
    [24]
    高飞, 慕春棣, 朱纪洪. 针对一类受限系统的优化迭代学习控制律[J]. 清华大学学报(自然科学版), 2013, 53(11): 1629-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201311022.htm

    GAO Fei, MU Chun-di, ZHU Ji-hong. Optimization iterative learning control for constrained systems[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(11): 1629-1636. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201311022.htm
    [25]
    李中奇, 丁俊英, 杨辉, 等. 基于控制器匹配的高速列车广义预测控制方法[J]. 铁道学报, 2018, 40(9): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201809013.htm

    LI Zhong-qi, DING Jun-ying, YANG Hui, et al. Generalized predictive control tuning for high-speed train based on controller matching method[J]. Journal of the China Railway Society, 2018, 40(9): 82-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201809013.htm
    [26]
    付雅婷, 杨辉. 基于多工况ANFIS模型的高速动车组运行速度控制[J]. 铁道学报, 2019, 41(4): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201904006.htm

    FU Ya-ting, YANG Hui. Speed control of high-speed electric multiple unit using a multiple operating condition ANFIS model[J]. Journal of the China Railway Society, 2019, 41(4): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201904006.htm
    [27]
    张亚东, 王硕, 李亚, 等. 基于STPA与多智能体的列控运营场景危险分析及仿真验证方法[J]. 中国铁道科学, 2021, 42(1): 147-155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202101018.htm

    ZHANG Ya-dong, WANG Shuo, LI Ya, et al. Hazard analysis and simulation verification method of train control operation scenarios based on STPA and multi-agent[J]. China Railway Science, 2021, 42(1): 147-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202101018.htm
    [28]
    HUANG De-qing, CHEN Yong, MENG De-yuan, et al. Adaptive iterative learning control for high-speed train: a multi-agent approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(7): 4067-4077.
    [29]
    LI Yang, YANG Xin, WU Jian-jun, et al. Discrete-event simulations for metro train operation under emergencies: a multi-agent based model with parallel computing[J]. Physica A: Statistical Mechanics and its Applications, 2021, 573: 125964.
    [30]
    SHU Yi-dan, ZHAO Jin-song. A simplified Markov-based approach for safety integrity level verification[J]. Journal of Loss Prevention in the Process Industries, 2014, 29: 262-266.
    [31]
    贾超. 考虑安全约束的列车自动驾驶多质点非线性预测控制[D]. 北京: 北京交通大学, 2020.

    JIA Chao. Nonlinear predictive control for automatic train operation with consideration of safety constraints and multi-point model[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (332) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return