Volume 23 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
JI Jie, LIANG Ben, HAN Bing-ye, SUO Zhi, WANG Jia-ni, YU Hai-chen. Review on soil solidified technologies in road engineering in China[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 47-66. doi: 10.19818/j.cnki.1671-1637.2023.02.003
Citation: JI Jie, LIANG Ben, HAN Bing-ye, SUO Zhi, WANG Jia-ni, YU Hai-chen. Review on soil solidified technologies in road engineering in China[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 47-66. doi: 10.19818/j.cnki.1671-1637.2023.02.003

Review on soil solidified technologies in road engineering in China

doi: 10.19818/j.cnki.1671-1637.2023.02.003
Funds:

National Key Research and Development Program of China 2022YFC38703400

National Natural Science Foundation of China 52078025

Science and Technology Project of Beijing Municipal Education Commission KZ201910016017

More Information
  • Author Bio:

    JI Jie (1972-), female, professor, PhD, jijie@bucea.edu.cn

  • Received Date: 2022-12-20
  • Publish Date: 2023-04-25
  • To enhance the versatility of various soil solidified technologies in road construction and to improve the regulations of solidified soil, a comparative analysis was conducted on the solidified effects and applicability ranges of stabilizers for different soils. Additionally, the specifications of road engineering design and construction were reviewed, and their strength requirements for base and sub-base were analyzed and compared with the solidified soil specifications. The compatibility of strength ranges of different grades of solidified soils and the requirements of the road specifications was studied. The internal relation between organic solidified soil and inorganic solidified soil in the strength requirements was established by integrating the solidified strength effect with the specification requirements in real situation. Research results show that inorganic, ion, and organic soil stabilizers display good solidification effects on non-special soils like clay, etc, whereas organic soil stabilizers exhibit a wider range of application and superior performance in stabilizing special soils like laterite, etc. The overlapping interval of the different 7 d unconfined compressive strength requirements for the base specified in the highway regulations and the lower limit interval comprised of various points for the minimum 7 d unconfined compressive strength requirements were combined to form an intersection interval of [1.5, 5.0] MPa. However, the minimum strength requirement for tertiary solidified soil is 2.5 MPa, which greatly differs from 5.0 MPa in the intersection interval in the highway specifications. Considering the characteristics of solidified soil and the diverse requirements of road types and structural specifications on material mechanical properties, it is suggested to refine the grading system of solidified soils by introducing three new grades: Grade Ⅳ [3.0, 4.0) MPa, Grade Ⅴ [4.0, 5.0) MPa, and Grade Ⅵ [5.0, +∞) MPa. There is no technical requirement for organic solidified soil in the current specifications and its mechanical properties are basically close to inorganic solidified soil. Its scope of application is better than inorganic solidified soil, so it is suggested that the subsequent revision of the specifications adds organic solidified soil category for standardized application.

     

  • loading
  • [1]
    张正一, 王朝辉, 张廉, 等. 中国绿色公路建设与评估技术[J]. 长安大学学报(自然科学版), 2018, 38(5): 76-86. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201805011.htm

    ZHANG Zheng-yi, WANG Chao-hui, ZHANG Lian, et al. Construction and assessment technology of green road in China[J]. Journal of Chang'an University (Natural Science Edition), 2018, 38(5): 76-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201805011.htm
    [2]
    高志伟, 刘鲁清, 肖绪荡, 等. 热阻沥青混合料研究进展[J]. 长安大学学报(自然科学版), 2020, 40(1): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202001013.htm

    GAO Zhi-wei, LIU Lu-qing, XIAO Xu-dang, et al. Research progress of thermal resistance asphalt mixture[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(1): 125-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202001013.htm
    [3]
    王朝辉, 刘鲁清, 韩晓霞, 等. 路用多孔页岩陶粒表面修饰优化[J]. 中国公路学报, 2019, 32(4): 196-206. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904018.htm

    WANG Chao-hui, LIU Lu-qing, HAN Xiao-xia, et al. Optimization of surface modification of porous expanded shale[J]. China Journal of Highway and Transport, 2019, 32(4): 196-206. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201904018.htm
    [4]
    樊恒辉, 高建恩, 吴普特. 土壤固化剂研究现状与展望[J]. 西北农林科技大学学报(自然科学版), 2006, 34(2): 141-146, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200602029.htm

    FAN Heng-hui, GAO Jian-en, WU Pu-te. Prospect of researches on soil stabilizer[J]. Journal of Northwest Science Technology University of Agriculture and Forestry (Natural Science Edition), 2006, 34(2): 141-146, 152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200602029.htm
    [5]
    米吉福, 汪浩, 刘晶冰, 等. 土壤固化剂的研究及应用进展[J]. 材料导报, 2017, 31(增1): 388-391, 401. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S1085.htm

    MI Ji-fu, WANG Hao, LIU Jing-bing, et al. Research and application progress of soil stabilizer[J]. Materials Review. 2017, 31(S1): 388-391, 401. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2017S1085.htm
    [6]
    张冠华, 牛俊, 孙金伟, 等. 土壤固化剂及其水土保持应用研究进展[J]. 土壤, 2018, 50(1): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201801004.htm

    ZHANG Guan-hua, NIU Jun, SUN Jin-wei, et al. Soil stabilizer and its application in soil and water conservation: a review[J]. Soils, 2018, 50(1): 28-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201801004.htm
    [7]
    李沛, 杨武, 邓永锋, 等. 土壤固化剂发展现状和趋势[J]. 路基工程, 2014(3): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201403001.htm

    LI Pei, YANG Wu, DENG Yong-feng, et al. Status quo and trend of soil stabilizer development[J]. Subgrade Engineering, 2014(3): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LJGC201403001.htm
    [8]
    周永祥, 阎培渝. 土壤加固技术及其发展[J]. 铁道科学与工程学报, 2006, 3(4): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200604006.htm

    ZHOU Yong-xiang, YAN Pei-yu. Soil reinforcement techniques and their evolvement[J]. Journal of Railway Science and Engineering, 2006, 3(4): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD200604006.htm
    [9]
    王银梅, 高立成. 黄土化学改良试验研究[J]. 工程地质学报, 2012, 20(6): 1071-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201206028.htm

    WANG Yin-mei, GAO Li-cheng. Experimental research on chemical improvement of loess[J]. Journal of Engineering Geology, 2012, 20(6): 1071-1077. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201206028.htm
    [10]
    周海龙, 申向东. 土壤固化剂的应用研究现状与展望[J]. 材料导报, 2014, 28(9): 134-138. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201409030.htm

    ZHOU Hai-long, SHEN Xiang-dong. Application research situation and prospect of soil stabilizer[J]. Materials Review, 2014, 28(9): 134-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201409030.htm
    [11]
    力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(增2): 1273-1277, 1298. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2056.htm

    LI Yi-peng, LI Ting. Stability mechanism and research progress of soil stabilizer[J]. Materials Reports, 2020, 34(S2): 1273-1277, 1298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB2020S2056.htm
    [12]
    REZAEIMALEK S, NASOURI A, HUANG Jie, et al. Comparison of short-term and long-term performances for polymer-stabilized sand and clay[J]. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4(2): 145-155. doi: 10.1016/j.jtte.2017.01.003
    [13]
    ZHU Yan, YU Xiang-juan, GAO Lei, et al. Unconfined compressive strength of aqueous polymer-modified saline soil[J]. International Journal of Polymer Science, 2019, 2019: 1-11.
    [14]
    KOLAY P K, DHAKAL B. Geotechnical properties and microstructure of liquid polymer amended fine-grained soils[J]. Geotechnical and Geological Engineering, 2020, 38(3): 2479-2491. doi: 10.1007/s10706-019-01163-x
    [15]
    ONYEJEKWE S, GHATAORA G S. Effect of fiber inclusions on flexural strength of soils treated with nontraditional additives[J]. Journal of Materials in Civil Engineering, 2014, 26(8): 04014039. doi: 10.1061/(ASCE)MT.1943-5533.0000922
    [16]
    刘竹, 关大博, 魏伟. 中国二氧化碳排放数据核算[J]. 中国科学: 地球科学, 2018, 48(7): 878-887. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201807005.htm

    LIU Zhu, GUAN Da-bo, WEI Wei. Carbon emission accounting in China[J]. Scientia Sinica (Terrae), 2018, 48(7): 878-887. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201807005.htm
    [17]
    朱淑瑛, 刘惠, 董金池, 等. 中国水泥行业二氧化碳减排技术及成本研究[J]. 环境工程, 2021, 39(10): 15-22. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202110003.htm

    ZHU Shu-ying, LIU Hui, DONG Jin-chi, et al. Mitigation technologies and marginal abatement cost curves for cement industry in China[J]. Environmental Engineering, 2021, 39(10): 15-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202110003.htm
    [18]
    张桂珍. 水泥生产过程中二氧化碳减排潜力分析[J]. 四川水泥, 2016(2): 5. doi: 10.3969/j.issn.1007-6344.2016.02.005

    ZHANG Gui-zhen. Potential analysis of carbon dioxide emission reduction in cement production[J]. Sichuan Cement, 2016(2): 5. (in Chinese) doi: 10.3969/j.issn.1007-6344.2016.02.005
    [19]
    ZUBERI M J S, PATEL M K. Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the Swiss cement industry[J]. Journal of Cleaner Production, 2017, 142: 4294-4309. doi: 10.1016/j.jclepro.2016.11.178
    [20]
    何峰, 刘峥延, 邢有凯, 等. 中国水泥行业节能减排措施的协同控制效应评估研究[J]. 气候变化研究进展, 2021, 17(4): 400-409. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202104003.htm

    HE Feng, LIU Zheng-yan, XING You-kai, et al. Co-control effect evaluation of the energy saving and emission reduction measures in Chinese cement industry[J]. Climate Change Research, 2021, 17(4): 400-409. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH202104003.htm
    [21]
    LIU Zhu, CIAIS P, DENG Zhu, et al. Carbon monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production[J]. Scientific Data, 2020, 7: 392. doi: 10.1038/s41597-020-00708-7
    [22]
    刘姚君, 汪澜. 水泥窑协同处置固体废物技术减排潜力与成本分析[J]. 水泥, 2018(3): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SNIZ201803005.htm

    LIU Yao-jun, WANG Lan. Emission reducing potential and cost analysis of technology of co-processing of hazardous wastes in cement kilns[J]. Cement, 2018(3): 11-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SNIZ201803005.htm
    [23]
    孟建伟, 华苏东, 姚晓. 废渣基土壤固化剂与不同土质的适应性研究[J]. 新型建筑材料, 2016, 43(8): 77-80, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201608023.htm

    MENG Jian-wei, HUA Su-dong, YAO Xiao. Research on the adaptation to different soils with waste residue-based soil solidification agent[J]. New Building Materials, 2016, 43(8): 77-80, 91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201608023.htm
    [24]
    王银梅, 韩文峰, 谌文武. 新型高分子固化材料与水泥加固黄土力学性能对比研究[J]. 岩土力学, 2004, 25(11): 1761-1765. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200411019.htm

    WANG Yin-mei, HAN Wen-feng, CHEN Wen-wu. Research on comparison between mechanical behaviors of loess solidified with new polymer material and cement[J]. Rock and Soil Mechanics, 2004, 25(11): 1761-1765. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200411019.htm
    [25]
    户轩庆. 生物酶固化剂在边坡工程中的试验研究[D]. 沈阳: 沈阳大学, 2018.

    HU Xuan-qing. The experimental study on soil stabilizer of biological enzyme in slope engineering[D]. Shenyang: Shenyang University, 2018. (in Chinese)
    [26]
    杨林, 朱金莲. 冻融条件TG固化剂石灰土无侧限抗压强度影响因素试验研究[J]. 中外公路, 2016, 36(5): 238-242. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201605054.htm

    YANG Lin, ZHU Jin-lian. Experimental study on influencing factors of unconfined compressive strength of lime soil with TG curing agent under freezing and thawing conditions[J]. Journal of China and Foreign Highway, 2016, 36(5): 238-242. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201605054.htm
    [27]
    LIU Jin, SHI Bin, JIANG Hong-tao, et al. Research on the stabilization treatment of clay slope topsoil by organic polymer soil stabilizer[J]. Engineering Geology, 2011, 117(1/2): 114-120.
    [28]
    张春东, 丁永明, 苗华, 等. EFS固化道路基层路用性能试验研究[J]. 施工技术, 2020, 49(3): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS202003004.htm

    ZHANG Chun-dong, DING Yong-ming, MIAO Hua, et al. Experimental study on pavement performance of EFS solidified road subgrade[J]. Construction Technology, 2020, 49(3): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS202003004.htm
    [29]
    IYENGAR S R, MASAD E, RODRIGUEZ A K, et al. Pavement subgrade stabilization using polymers: characterization and performance[J]. Journal of Materials in Civil Engineering, 2013, 25(4): 472-483.
    [30]
    KUSHWAHA P, CHAUHAN A S, SWAMI S, et al. Investigating the effects of nanochemical-based ionic stabilizer and co-polymer on soil properties for pavement construction[J]. International Journal of Geotechnical Engineering, 2021, 15(3): 379-388.
    [31]
    李焕弟, 缴锡云, 李江, 等. 基于MICP及EICP技术的土壤固化试验研究[J]. 灌溉排水学报, 2021, 40(7): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS202107009.htm

    LI Huan-di, JIAO Xi-yun, LI Jiang, et al. Using microbe-induced calcite precipitation and enzyme-induced carbonate precipitation to cement slopes of earth ditches[J]. Journal of Irrigation and Drainage, 2021, 40(7): 59-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS202107009.htm
    [32]
    李元元, 王占礼, 刘俊娥, 等. 喷施中性多聚糖对黄土坡面降雨入渗的影响[J]. 土壤学报, 2017, 54(4): 844-853. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201704005.htm

    LI Yuan-yuan, WANG Zhan-li, LIU Jun-e, et al. Effect of spraying jag S on rain water infiltration on loess slope[J]. Acta Pedologica Sinica, 2017, 54(4): 844-853. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201704005.htm
    [33]
    姬红利, 颜蓉, 李运东, 等. 施用土壤改良剂对磷素流失的影响研究[J]. 土壤, 2011, 43(2): 203-209. https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201102010.htm

    JI Hong-li, YAN Rong, LI Yun-dong, et al. Effects of soil ameliorants on phosphorus loss[J]. Soils, 2011, 43(2): 203-209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TURA201102010.htm
    [34]
    杨明坤, 王芳辉, 姚洋, 等. 一种新型环保固沙剂的制备与性能研究[J]. 材料研究学报, 2012, 26(3): 225-230. https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201203002.htm

    YANG Ming-kun, WANG Fang-hui, YAO Yang, et al. Preparation and sanding-fixing properties of a new-type environment friendly sand-fixing agent[J]. Chinese Journal of Materials Research, 2012, 26(3): 225-230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CYJB201203002.htm
    [35]
    DAVIDOVITS J. Geopolymer chemistry and sustainable development[C]//Geopolymer Institute: Proceedings of the World Congress Geopolymer. Saint-Quentin: Geopolymer Institute, 2005: 9-15.
    [36]
    LATIFI N, HORPIBULSUK S, MEEHAN C L, et al. Improvement of problematic soils with biopolymer—an environmentally friendly soil stabilizer[J]. Journal of Materials in Civil Engineering, 2017, 29(2): 04016204.
    [37]
    LATIFI N, MARTO A, EISAZADEH A. Physicochemical behavior of tropical laterite soil stabilized with non-traditional additive[J]. Acta Geotechnica, 2016, 11(2): 433-443. doi: 10.1007/s11440-015-0370-3
    [38]
    LATIFI N, MARTO A, EISAZADEH A. Structural characteristics of laterite soil treated by SH-85 and TX-85 (non-traditional) stabilizer[J]. Electronic Journal of Geotechnical Engineering, 2013, 18: 1707-1718.
    [39]
    HUANG Jian-xin, KOGBARA R B, HARIHARAN N, et al. A state-of-the-art review of polymers used in soil stabilization[J]. Construction and Building Materials, 2021, 305: 124685.
    [40]
    刘世皎, 樊恒辉, 史祥, 等. BCS土壤固化剂固化土的耐久性研究[J]. 西北农林科技大学学报(自然科学版), 2014, 42(12): 214-220. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201412032.htm

    LIU Shi-jiao, FAN Heng-hui, SHI Xiang, et al. Durability of stabilized soil by BCS[J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(12): 214-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY201412032.htm
    [41]
    刘蕾, 姚勇, 陈代果, 等. EFS固化道路基层经济指标分析[J]. 施工技术, 2020, 49(3): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS202003006.htm

    LIU Lei, YAO Yong, CHEN Dai-guo, et al. Analysis of economic indicators of EFS solidified road subgrade[J]. Construction Technology, 2020, 49(3): 22-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS202003006.htm
    [42]
    鲁惠中. 利用响应面中心组合法固化淮南瓦埠湖软土优化研究[D]. 合肥: 安徽建筑大学, 2020.

    LU Hui-zhong. Optimization research for stablizing the wabu lake soft soil in Huainan using central composite design of response surface methodology[D]. Hefei: Anhui Jianzhu University, 2020. (in Chinese)
    [43]
    LIU Jin, WANG Yong, LU Yi, et al. Effect of polyvinyl acetate stabilization on the swelling-shrinkage properties of expansive soil[J]. International Journal of Polymer Science, 2017, 2017: 1-8. https://www.hindawi.com/journals/ijps/2017/8128020/
    [44]
    LIU Jin, CHEN Zhi-hao, KANUNGO D P, et al. Topsoil reinforcement of sandy slope for preventing erosion using water-based polyurethane soil stabilizer[J]. Engineering Geology, 2019, 252: 125-135.
    [45]
    LIU Jin, CHEN Zhi-hao, SONG Ze-zhuo, et al. Tensile behavior of polyurethane organic polymer and polypropylene fiber-reinforced sand[J]. Polymers, 2018, 10(5): 499.
    [46]
    LIU Jin, QI Xiao-hui, ZHANG Da, et al. Study on the permeability characteristics of polyurethane soil stabilizer reinforced sand[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-14. https://www.hindawi.com/journals/amse/2017/5240186/
    [47]
    MOHAMED S W A. Stabilization of desert sand using water-borne polymers[D]. Al Ain: United Arab Emirates University, 2004.
    [48]
    ZHANG Tao, LIU Song-yu, CAI Guo-jun, et al. Experimental investigation of thermal and mechanical properties of lignin treated silt[J]. Engineering Geology, 2015, 196: 1-11. https://www.sciencedirect.com/science/article/pii/S0013795215300120
    [49]
    INDRARATNA B, MUTTUVEL T, KHABBAZ H, et al. Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 837-844. doi: 10.1061/(ASCE)1090-0241(2008)134:6(837)
    [50]
    CHANG I, IM J, CHO G C. Geotechnical engineering behaviors of gellan gum biopolymer treated sand[J]. Canadian Geotechnical Journal, 2016, 53(10): 1658-1670.
    [51]
    何国平, 蔡天德, 陈双, 等. 土质固化剂对水泥土力学特性的影响及机理研究[J]. 中国测试, 2021, 47(6): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202106011.htm

    HE Guo-ping, CAI Tian-de, CHEN Shuang, et al. Research on the effect and mechanism of soil curing agent on mechanical properties of cement soil[J]. China Measurement & Test, 2021, 47(6): 63-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202106011.htm
    [52]
    LUO Xiao-hua, XU Wen-yi, QIU Xin, et al. Exploring the microstructure characteristics and mechanical behavior of the ionic soil stabilizer-treated clay[J]. Arabian Journal of Geosciences, 2020, 13(15): 729.
    [53]
    吴雪婷, 齐一, 吴迪, 等. EN-1型离子土固化剂固土效果对比研究[J]. 工程勘察, 2021, 49(8): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202108001.htm

    WU Xue-ting, QI Yi, WU Di, et al. Comparative study on the effect of EN-1 ionic soil stabilizer on soil solidification[J]. Geotechnical Investigation & Surveying, 2021, 49(8): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202108001.htm
    [54]
    吴雪婷, 程明峰, 唐杉, 等. ISS—水泥联合固化淤泥的微观机理研究[J]. 工程勘察, 2020, 48(1): 14-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202001004.htm

    WU Xue-ting, CHENG Ming-feng, TANG Shan, et al. Micro-mechanism of combined solidification for silt with ISS and cement[J]. Geotechnical Investigation & Surveying, 2020, 48(1): 14-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC202001004.htm
    [55]
    ROBERTS K, KOWALEWSKA J, FRIBERG S. The influence of interactions between hydrolyzed aluminum ions and polyacrylamides on the sedimentation of kaolin suspensions[J]. Journal of Colloid and Interface Science, 1974, 48(3): 361-367. https://www.sciencedirect.com/science/article/pii/0021979774901787
    [56]
    ZHI Xi-lan, WANG Wei-na, CAI Yi-chang. Cost-benefit timing for applying slurry seal on actual roadway tests in China[J]. Journal of Central South University, 2012, 19(8): 2394-2402. doi: 10.1007/s11771-012-1287-8
    [57]
    杨青, 罗小花, 邱欣, 等. 离子土壤固化剂固化土的微观结构特征及固化机理研究[J]. 公路交通科技, 2015, 32(11): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201511006.htm

    YANG Qing, LUO Xiao-hua, QIU Xin, et al. Analysis of microstructure characteristics and stabilization mechanism of ionic soil stabilizer treated clay[J]. Journal of Highway and Transportation Research and Development, 2015, 32(11): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201511006.htm
    [58]
    游庆龙, 邱欣, 杨青, 等. 离子土壤固化剂固化红黏土强度特性[J]. 中国公路学报, 2019, 32(5): 64-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905007.htm

    YOU Qing-long, QIU Xin, YANG Qing, et al. Strength properties of ionic soil stabilizer treated red soil[J]. China Journal of Highway and Transport, 2019, 32(5): 64-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905007.htm
    [59]
    杨富民, 何军利, 孙成晓, 等. TK-G型液体土壤固化剂的研制及其固化机理[J]. 科学技术与工程, 2019, 19(5): 242-246. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201905037.htm

    YANG Fu-min, HE Jun-li, SUN Cheng-xiao, et al. Development and curing mechanism of TK-G soil solidified agent[J]. Science Technology and Engineering, 2019, 19(5): 242-246. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201905037.htm
    [60]
    吕寒雪, 冯瑞莹, 王浩. 土壤固化剂在现代路面基层和底基层中的应用[J]. 环渤海经济瞭望, 2019(7): 198-200. https://www.cnki.com.cn/Article/CJFDTOTAL-HBHJ201907146.htm

    LYU Han-xue, FENG Rui-ying, WANG Hao. Application of soil curing agent in modern pavement base and subbase[J]. Economic Outlook the Bohai Sea, 2019(7): 198-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBHJ201907146.htm
    [61]
    MOEN D E, RICHARDSON J L. Ultrasonic dispersion of soil aggregates stabilized by polyvinyl alcohol and T403-glyoxal polymers[J]. Soil Science Society of America Journal, 1984, 48(3): 628-631.
    [62]
    RICHARDSON J L, GUNNERSON W T, GILES J F. Influence of in situ two-phase polymers on aggregate stabilization in various textured North Dakota soils[J]. Canadian Journal of Soil Science, 1987, 67(1): 209-213.
    [63]
    EUJINE G N, SOMERVELL L T, CHANDRAKARAN S, et al. Enzyme stabilization of high liquid limit clay[J]. 2014, 19: 6989-6995.
    [64]
    孟子龙. 生物酶固化技术在道路基层中的应用研究[D]. 长沙: 长沙理工大学, 2012.

    MENG Zi-long. The research on application of bio-enzyme stabilizer on road base construction[D]. Changsha: Changsha University of Science & Technology, 2012. (in Chinese)
    [65]
    CHANG I, LEE M, TRAN T P A, et al. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices[J]. Transportation Geotechnics, 2020, 24: 100385.
    [66]
    CABALAR A F, AWRAHEEM M H, KHALAF M M. Geotechnical properties of a low-plasticity clay with biopolymer[J]. Journal of Materials in Civil Engineering, 2018, 30(8): 04018170.
    [67]
    孙振平, 吕文斌, 孙广花. 派酶改善土壤密实性和强度的效果及其机理研究[J]. 新型建筑材料, 2010, 37(10): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201010030.htm

    SUN Zhen-ping, LYU Wen-bin, SUN Guang-hua. Investigation on the enhancing efficiency and acting mechanism of PERMA-ZYME on densification and strength of soil[J]. New Building Materials, 2010, 37(10): 87-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201010030.htm
    [68]
    GHADIR P, RANJBAR N. Clayey soil stabilization using geopolymer and Portland cement[J]. Construction and Building Materials, 2018, 188: 361-371. https://www.sciencedirect.com/science/article/pii/S0950061818318798
    [69]
    LATIFI N, EISAZADEH A, MARTO A. Strength behavior and microstructural characteristics of tropical laterite soil treated with sodium silicate-based liquid stabilizer[J]. Environmental Earth Sciences, 2014, 72(1): 91-98. doi: 10.1007/s12665-013-2939-1
    [70]
    YU Jia-ren, CHEN Yong-hui, CHEN Geng, et al. Experimental study of the feasibility of using anhydrous sodium metasilicate as a geopolymer activator for soil stabilization[J]. Engineering Geology, 2020, 264: 105316.
    [71]
    ZHANG Mo, GUO Hong, EL-KORCHI T, et al. Experimental feasibility study of geopolymer as the next-generation soil stabilizer[J]. Construction and Building Materials, 2013, 47: 1468-1478. https://www.sciencedirect.com/science/article/pii/S0950061813005357
    [72]
    ZHANG Mo, ZHAO Meng-xuan, ZHANG Guo-ping, et al. Calcium-free geopolymer as a stabilizer for sulfate-rich soils[J]. Applied Clay Science, 2015, 108: 199-207. https://www.sciencedirect.com/science/article/pii/S0169131715000897
    [73]
    DU Yan-jun, YU Bo-wei, JIANG Ning-jun, et al. Physical, hydraulic, and mechanical properties of clayey soil stabilized by lightweight alkali-activated slag geopolymer[J]. Journal of Materials in Civil Engineering, 2017, 29(2): 04016217.
    [74]
    BILONDI M P, TOUFIGH M M, TOUFIGH V. Experimental investigation of using a recycled glass powder-based geopolymer to improve the mechanical behavior of clay soils[J]. Construction and Building Materials, 2018, 170: 302-313. https://www.sciencedirect.com/science/article/pii/S0950061818305324
    [75]
    徐学分, 潘志华, 李洪马. SG-1型土壤固化剂固化土的实验研究[J]. 材料导报, 2014, 28(16): 126-129. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201416032.htm

    XU Xue-fen, PAN Zhi-hua, LI Hong-ma. Experimental study on soil stabilized by SG-1 soil stabilizer[J]. Materials Review, 2014, 28(16): 126-129. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201416032.htm
    [76]
    陈明明, 黄伟, 邱鹏, 等. 离子型土壤固化剂固化土基层试验研究[J]. 安徽工业大学学报(自然科学版), 2021, 38(1): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-HDYX202101014.htm

    CHEN Ming-ming, HUANG Wei, QIU Peng, et al. Experimental study on solidification of soil base with ionic soil solidification agent[J]. Journal of Anhui University of Technology (Natural Science), 2021, 38(1): 97-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDYX202101014.htm
    [77]
    邢明亮, 梁志豪, 关博文, 等. 离子型土壤固化剂在公路工程应用中均匀性评价与控制[J]. 公路, 2019, 64(10): 34-40. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910007.htm

    XING Ming-liang, LIANG Zhi-hao, GUAN Bo-wen, et al. Evaluation and control of uniformity of ionic soil curing agent in highway project application[J]. Highway, 2019, 64(10): 34-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201910007.htm
    [78]
    ZANDIEH A R, YASROBI S S. Study of factors affecting the compressive strength of sandy soil stabilized with polymer[J]. Geotechnical and Geological Engineering, 2010, 28(2): 139-145.
    [79]
    MARTO A, LATIFI N, SOHAEI H. Stabilization of laterite soil using GKS soil stabilizer[J]. Electronic Journal of Geotechnical Engineering, 2013, 18 C: 521-532.
    [80]
    杨林, 张秉夏. TG-2型土壤固化剂水泥石灰土的强度和稳定性试验[J]. 公路交通科技, 2013, 30(9): 27-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201309005.htm

    YANG Lin, ZHANG Bing-xia. Strength and stability test for cement-lime stabilized clay with TG-2 soil solidifying agent[J]. Journal of Highway and Transportation Research and Development, 2013, 30(9): 27-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201309005.htm
    [81]
    ANAGNOSTOPOULOS C A, KANDILIOTIS P, LOLA M, et al. Improving properties of sand using epoxy resin and electrokinetics[J]. Geotechnical and Geological Engineering, 2014, 32(4): 859-872. doi: 10.1007/s10706-014-9763-6
    [82]
    江臣, 施斌, 刘发, 等. 宁淮高速公路膨胀土边坡生态土壤稳定剂土质改性试验研究[J]. 防灾减灾工程学报, 2009, 29(5): 507-512. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200905007.htm

    JIANG Chen, SHI Bin, LIU Fa, et al. Study on soil improvement of expansive soil slope with ecotypic soil stabilizer in Ning-Huai expressway[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(5): 507-512. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK200905007.htm
    [83]
    CHANG I, CHO G C. Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer[J]. Construction and Building Materials, 2012, 30: 30-35.
    [84]
    SUJATHA E R, SAISREE S. Geotechnical behaviour of guar gum-treated soil[J]. Soils and Foundations, 2019, 59(6): 2155-2166.
    [85]
    蒋亮. 长寿命沥青路面基层适应性以及设计与施工控制一体化研究[D]. 西安: 长安大学, 2007.

    JIANG Liang. Study on basement adaptability and integration of basement design and construction of long-life asphalt pavement[D]. Xi'an: Chang'an University, 2007. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1358) PDF downloads(194) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return