Volume 23 Issue 2
Apr.  2023
Turn off MathJax
Article Contents
XIE Ji-ming, XIA Yu-lan, QIAN Zheng-fu, LIU Bing, QIN Ya-qin. Lane-change risk warning in interweaving area considering information from intelligent connected near-neighboring vehicles[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 287-300. doi: 10.19818/j.cnki.1671-1637.2023.02.021
Citation: XIE Ji-ming, XIA Yu-lan, QIAN Zheng-fu, LIU Bing, QIN Ya-qin. Lane-change risk warning in interweaving area considering information from intelligent connected near-neighboring vehicles[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 287-300. doi: 10.19818/j.cnki.1671-1637.2023.02.021

Lane-change risk warning in interweaving area considering information from intelligent connected near-neighboring vehicles

doi: 10.19818/j.cnki.1671-1637.2023.02.021
Funds:

National Natural Science Foundation of China 71861016

More Information
  • Author Bio:

    XIE Ji-ming(1994-), male, doctoral student,xiejiming@kust.edu.cn

    QIN Ya-qin(1972-), female, professor, PhD, qinyaqin@kust.edu.cn.

  • Received Date: 2022-10-19
    Available Online: 2023-05-09
  • Publish Date: 2023-04-25
  • In view of the problems of large feature differences, unbalanced samples, and long parameter tuning time in predicting the lane-change risk of vehicles, the high-precision microscopic vehicle trajectory data were combined with the hyperparametric optimization machine learning method, and a method for identifying and warning of the lane-change risk in interweaving areas was proposed, which could be applied to intelligent connected vehicles (ICV). According to the unmanned aerial vehicle video, lane-change trajectories with time accuracy of 0.1 s and spatial accuracy of 0.1 m per pixel in the urban expressway interweaving area were extracted from a wide-area view, and the lane-change risk perception information, such as the vehicle spacing, vector velocity, acceleration, proximity rate, and velocity angle, was measured. A lane-change time-to-collision (TTC) model that took into account information from near-neighboring vehicles was introduced, and the urgent need for vehicles to merge into or leave arteries was reflected. In addition, the difference in the lane-change behaviors at different locations was described. The 15th quartile method and the interquartile range method were used, and the warning levels for lane-change risks were classified. With several evaluation metrics, such as the accuracy, true positive rate, and sensitivity, the linear classifier, support vector machine, K-nearest neighbor, and RUSBoost model were selected and compared in terms of the lane-change risk prediction results, and the optimal model for the real-time warning of lane-change risks in interweaving areas was selected. For the optimal model, the hyperparameters were optimized and validated. Research results show that the RUSBoost model is the optimal model. When the hyperparametric optimization machine learning method iterates 24th times, the minimum error and optimal point hyperparameter of RUSBoost appear, and the prediction accuracies of RUSBoost and optimized BRUSBoost models are 91.40% and 99.80%, respectively. The AUC values are 0.96 and 0.99, respectively, and the warning accuracy of the optimized BRUSBoost model for level Ⅰ and Ⅲ lane change risks improves by 50.9% and 41.2%, respectively. As a result, the defects of more complex and less predictable lane-change conditions of extreme risks improves effectively. The research results can help the ICV lane-change decisions and trajectory optimization and guide traffic management departments to develop ICV dynamic warning schemes.

     

  • loading
  • [1]
    李熙莹, 梁靖茹, 张伟斌, 等. 基于航拍视频构建风险指数的交织区拥堵识别方法[J]. 铁道科学与工程学报, 2023, 20(2): 494-505. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202302013.htm

    LI Xi-ying, LIANG Jing-ru, ZHANG Wei-bin, et al. Congestion recognition method in weaving sections by constructing risk index based on aerial video[J]. Journal of Railway Science and Engineering, 2023, 20(2): 494-505. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202302013.htm
    [2]
    VAN BEINUM A, FARAH H, WEGMAN F, et al. Driving behaviour at motorway ramps and weaving segments based on empirical trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 426-441. doi: 10.1016/j.trc.2018.05.018
    [3]
    HAO Wei, ZHANG Zhao-lei, GAO Zhi-bo, et al. Research on mandatory lane-changing behavior in highway weaving sections[J]. Journal of Advanced Transportation, 2020, 2020: 1-9.
    [4]
    张卫华, 刘嘉茗, 解立鹏, 等. 网联混合环境快速路交织区自动驾驶车辆换道模型[J]. 吉林大学学报(工学版), 2022, DOI: 10.13229/j.cnki.jdxbgxb20220990.

    ZHANG Wei-hua, LIU Jia-ming, XIE Li-peng, et al. Lane-changing model of autonomous vehicle in weaving area of expressway in intelligent and connected mixed environment[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, DOI: 10.13229/j.cnki.jdxbgxb20220990.ZHANG(inChinese)
    [5]
    陈吉清, 翁楚滨, 兰凤崇. 智能车辆换道潜在冲突分析与风险量化方法[J]. 汽车工程, 2021, 43(11): 1565-1576, 1586. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202111001.htm

    CHEN Ji-qing, WENG Chu-bin, LAN Feng-chong. Potential conflict analysis and risk quantification method of intelligent vehicle lane change[J]. Automotive Engineering, 2021, 43(11): 1565-1576, 1586. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202111001.htm
    [6]
    BHA M, GHULAM H. A simple lane change model for microscopic traffic flow simulation in weaving sections[J]. Transportation Letters, 2011, 3(4): 231-251. doi: 10.3328/TL.2011.03.04.231-251
    [7]
    PAN T L, LAM W H K, SUMALEE A, et al. Modeling the impacts of mandatory and discretionary lane-changing maneuvers[J]. Transportation Research Part C: Emerging Technologies, 2016, 68: 403-424. doi: 10.1016/j.trc.2016.05.002
    [8]
    YUAN Jing-hui, ABDEL A M, CAI Qing, et al. Investigating drivers' mandatory lane change behavior on the weaving section of freeway with managed lanes: a driving simulator study[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 62: 11-32. doi: 10.1016/j.trf.2018.12.007
    [9]
    WAN Xia, JIN P J, GU Hai-yan, et al. Modeling freeway merging in a weaving section as a sequential decision-making process[J]. Journal of Transportation Engineering, Part A: Systems, 2017, 143(5): 05017002. doi: 10.1061/JTEPBS.0000048
    [10]
    蒋渊德, 朱冰, 赵祥模, 等. 面向自动驾驶汽车测试的交通车辆交互过程建模[J]. 汽车工程, 2022, 44(12): 1825-1833. doi: 10.19562/j.chinasae.qcgc.2022.12.004

    JIANG Yuan-de, ZHU Bing, ZHAO Xiang-mo, et al. Modeling of traffic vehicle interaction for autonomous vehicle testing[J]. Automotive Engineering, 2022, 44(12): 1825-1833. (in Chinese) doi: 10.19562/j.chinasae.qcgc.2022.12.004
    [11]
    张荣辉, 游峰, 初鑫男, 等. 车-车协同下无人驾驶车辆的换道汇入控制方法[J]. 中国公路学报, 2018, 31(4): 180-191. doi: 10.19721/j.cnki.1001-7372.2018.04.022

    ZHANG Rong-hui, YOU Feng, CHU Xin-nan, et al. Lane change merging control method for unmanned vehicle under V2V cooperative environment[J]. China Journal of Highway and Transport, 2018, 31(4): 180-191. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2018.04.022
    [12]
    陈荔, 张驰, 王博, 等. 隧道与互通出口小净距路段换道可靠性研究[J]. 中国公路学报, 2022, 35(9): 51-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202209005.htm

    CHEN Li, ZHANG Chi, WANG Bo, et al. Research of lane changing reliability on short distance section between tunnel and interchange exit[J]. China Journal of Highway and Transport, 2022, 35(9): 51-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202209005.htm
    [13]
    单肖年, 万长薪, 李志斌, 等. 智能网联环境下多车道异质交通流建模与仿真[J]. 交通运输系统工程与信息, 2022, 22(6): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202206008.htm

    SHAN Xiao-nian, WAN Chang-xin, LI Zhi-bin, et al. Modeling and simulation of multi-lane heterogeneous traffic flow in intelligent and connected vehicle environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 74-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202206008.htm
    [14]
    ZHOU Hui-ping, ITOH M. How does a driver perceive risk when making decision of lane-changing?[J]. IFAC—PapersOnLine, 2016, 49(19): 60-65. doi: 10.1016/j.ifacol.2016.10.462
    [15]
    吕能超, 杜子君, 吴超仲, 等. 多车道高速公路出口开口段安全特性分析[J]. 交通运输系统工程与信息, 2021, 21(3): 120-130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103015.htm

    LYU Neng-chao, DU Zi-jun, WU Chao-zhong, et al. Safety characteristics of exit section of multi-lane expressway[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 120-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103015.htm
    [16]
    漆巍巍, 马思维, 周南杰. 高速公路分合流区车流元胞模型的构建及应用[J]. 华南理工大学学报(自然科学版), 2022, 50(10): 11-18.

    QI Wei-wei, MA Si-wei, ZHOU Nan-jie. Construction and application of cellular automaton model of traffic flow in freeway diverging and merging areas[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(10): 11-18. (in Chinese)
    [17]
    THEOFILATOS A, YANNIS G, KOPELIAS P, et al. Impact of real-time traffic characteristics on crash occurrence: preliminary results of the case of rare events[J]. Accident Analysis and Prevention, 2019, 130: 151-159. doi: 10.1016/j.aap.2017.12.018
    [18]
    刘唐志, 毕辉云, 杨卓思, 等. 基于操纵量指标的合流区危险驾驶行为谱研究[J/OL]. 交通运输系统工程与信息, (2023-01-18)[2023-04-01]. https://kns.cnki.net/kcms/detail//11.4520.U.20230118.1025.004.html.

    LIU Tang-zhi, BI Hui-yun, YANG Zhuo-si, et al. Research on dangerous driving behavior spectrum in merging area based on maneuver indicators[J/OL]. Journal of Transportation Systems Engineering and Information Technology, (2023-01-18)[2023-04-01]. https://kns.cnki.net/kcms/detail//11.4520.U.20230118.1025.004.html. (in Chinese)
    [19]
    FORMOSA N, QUDDUS M, ISON S, et al. Predicting real-time traffic conflicts using deep learning[J]. Accident Analysis and Prevention, 2020, 136: 105429. doi: 10.1016/j.aap.2019.105429
    [20]
    FERREIRA S, COUTO A. A probabilistic approach towards a crash risk assessment of urban segments[J]. Transportation Research Part C: Emerging Technologies, 2015, 50: 97-105.
    [21]
    ZHENG Lai, SAYED T, MANNERING F. Modeling traffic conflicts for use in road safety analysis: a review of analytic methods and future directions[J]. Analytic Methods in Accident Research, 2021, 29: 100142.
    [22]
    WARD J R, AGAMENNONI G, WORRALL S, et al. Extending time to collision for probabilistic reasoning in general traffic scenarios[J]. Transportation Research Part C: Emerging Technologies, 2015, 51: 66-82.
    [23]
    刘兵, 王锦锐, 赵荣达, 等. 面向换道冲突互信息的复杂交织区车辆风险识别[J]. 安全与环境学报, 2022, 22(4): 1768-1775. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202204010.htm

    LIU Bing, WANG Jin-rui, ZHAO Rong-da, et al. Vehicle risk identification in complex weaving areas for conflicting mutual information on lane change[J]. Journal of Safety and Environment, 2022, 22(4): 1768-1775. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202204010.htm
    [24]
    YUAN Chen, LI Ye, HUANG He-lai, et al. Using traffic flow characteristics to predict real-time conflict risk: a novel method for trajectory data analysis[J]. Analytic Methods in Accident Research, 2022, 35: 100217.
    [25]
    温惠英, 李秋灵, 赵胜. 快速路合流区大型车换道时空特征及风险研究[J]. 华南理工大学学报(自然科学版), 2022, 50(5): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202205002.htm

    WEN Hui-ying, LI Qiu-ling, ZHAO Sheng. Research on spatiotemporal characteristic and risk of lane-changing behaviors of large vehicles in expressway merging area[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(5): 11-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202205002.htm
    [26]
    刘兵, 王锦锐, 谢济铭, 等. 微观轨迹数据驱动的交织区换道概率分布模型[J]. 汽车安全与节能学报, 2022, 13(2): 333-340. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN202202014.htm

    LIU Bing, WANG Jin-rui, XIE Ji-ming, et al. Microscopic trajectory data-driven probability distribution model for weaving area of channel change[J]. Journal of Automotive Safety and Energy, 2022, 13(2): 333-340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN202202014.htm
    [27]
    谢济铭. 考虑车辆行驶行为的山地城市干线复杂交织区交通流建模与分析[D]. 重庆: 重庆交通大学, 2020.

    XIE Ji-ming. Traffic flow modeling and analysis on complex weaving area of mountain city trunk road considering vehicle driving behaviors[D]. Chongqing: Chongqing Jiaotong University, 2020. (in Chinese)
    [28]
    XING Lu, HE Jie, ABDEL-ATY M, et al. Examining traffic conflicts of up stream toll plaza area using vehicles trajectory data[J]. Accident Analysis and Prevention, 2019, 125: 174-187.
    [29]
    谢济铭, 秦雅琴, 彭博, 等. 多车道交织区车辆跟驰行为风险判别与冲突预测[J]. 交通运输系统工程与信息, 2021, 21(3): 131-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103016.htm

    XIE Ji-ming, QIN Ya-qin, PENG Bo, et al. Risk discrimination and conflict prediction of vehicle-following behavior in multi-lane weaving sections[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 131-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103016.htm
    [30]
    吴晓建, 燕冬, 王爱春, 等. 融合前车轨迹预测的改进人工势场轨迹规划研究[J]. 汽车工程, 2021, 43(12): 1752-1761,1779. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202112003.htm

    WU Xiao-jian, YAN Dong, WANG Ai-chun, et al. Research on improved artificial potential field path planning integrating prediction of preceding vehicle trajectory[J]. Automotive Engineering, 2021, 43(12): 1752-1761, 1779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202112003.htm
    [31]
    王可, 陆键, 蒋愚明. 基于车辆行驶轨迹的道路不良驾驶行为谱构建与特征值计算方法[J]. 交通运输工程学报, 2020, 20(6): 236-249. doi: 10.19818/j.cnki.1671-1637.2020.06.021

    WANG Ke, LU Jian, JIANG Yu-ming. Abnormal road driving behavior spectrum establishment and characteristic value calculation method based on vehicle driving trajectory[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 236-249. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.021
    [32]
    曾德宇, 梁泽逍, 吴宗泽. 基于加权核范数和L2, 1范数的最优均值线性分类器[J]. 电子与信息学报, 2022, 44(5): 1602-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202205011.htm

    ZENG De-yu, LIANG Ze-xiao, WU Zong-ze. Optimal mean linear classifier via weighted nuclear norm and L2, 1 norm[J]. Journal of Electronics and Information Technology, 2022, 44(5): 1602-1609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202205011.htm
    [33]
    杨飞, 郭煜东, JIN J P, 等. 基于手机传感器数据的交通出行调查实证评估[J]. 交通运输工程学报, 2020, 20(1): 226-238. doi: 10.19818/j.cnki.1671-1637.2020.01.019

    YANG Fei, GUO Yu-dong, JIN J P, et al. Empirical evaluation of travel survey based on mobile phone sensor data[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 226-238. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.019
    [34]
    XUE Qing-wen, XING Ying-ying, LU Jian. An integrated lane change prediction model incorporating traffic context based on trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2022, 141: 103738.
    [35]
    YI De-wei, SU Jin-ya, LIU Cun-jia, et al. A machine learning based personalized system for driving state recognition[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 241-261.
    [36]
    李秋谷. 隧道出口近邻区车辆换道意图辨识与轨迹预测[D]. 昆明: 昆明理工大学, 2022.

    LI Qiu-gu. Vehicle lane change intention recognition and trajectory prediction in tunnel exit near-neighborhood[D]. Kunming: Kunming University of Science and Technology, 2022. (in Chinese)
    [37]
    SINGH P, CHAUDHURY S, PANIGRAHI B K. Hybrid MPSO-CNN: multi-level particle swarm optimized hyperparameters of convolutional neural network[J]. Swarm and Evolutionary Computation, 2021, 63: 100863.
    [38]
    谢济铭, 夏玉兰, 秦雅琴, 等. 基于双向长短期记忆网络的城市快速路合流区车速预测[J/OL]. 西南交通大学学报, (2022-07-06)[2022-10-19]. https://kns.cnki.net/kcms/detail/51.1277.U.20220705.2038.020.html.

    XIE Ji-ming, XIA Yu-lan, QIN Ya-qin, et al. Traffic speed prediction in merging zone of urban expressway based on bidirectional long short-term memory network[J/OL]. Journal of Southwest Jiaotong University, (2022-07-06)[2022-10-19]. https://kns.cnki.net/kcms/detail/51.1277.U.20220705.2038.020.html.(in Chinese)
    [39]
    ZHONG Jing-jing, TSE P W, WANG Dong. Novel Bayesian inference on optimal parameters of support vector machines and its application to industrial survey data classification[J]. Neurocomputing, 2016, 211: 159-171.
    [40]
    魏佳恒, 郭惠勇. 基于贝叶斯优化BiLSTM模型的输电塔损伤识别[J]. 振动与冲击, 2023, 42(1): 238-248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202301028.htm

    WEI Jia-heng, GUO Hui-yong. Damage identification of transmission tower based on BO-BiLSTM model[J]. Journal of Vibration and Shock, 2023, 42(1): 238-248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202301028.htm
    [41]
    于靖宇, 魏海平, 郭宏伟, 等. 贝叶斯优化模糊C均值的城市交通状态判别方法[J]. 测绘科学技术学报, 2021, 38(6): 653-658. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC202106016.htm

    YU Jing-yu, WEI Hai-ping, GUO Hong-wei, et al. Urban traffic state identification based on BO-FCM[J]. Journal of Geomatics Science and Technology, 2021, 38(6): 653-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC202106016.htm
    [42]
    秦雅琴, 李秋谷, 赵鹏燕, 等. 基于多分类Adaboost算法的驾驶人风险感知倾向研究[J]. 中国安全科学学报, 2022, 32(4): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202204021.htm

    QIN Ya-qin, LI Qiu-gu, ZHAO Peng-yan, et al. Research on risk perception tendency of drivers based on multi-class Adaboost algorithm[J]. China Safety Science Journal, 2022, 32(4): 141-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202204021.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (654) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return