Citation: | XIE Ji-ming, XIA Yu-lan, QIAN Zheng-fu, LIU Bing, QIN Ya-qin. Lane-change risk warning in interweaving area considering information from intelligent connected near-neighboring vehicles[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 287-300. doi: 10.19818/j.cnki.1671-1637.2023.02.021 |
[1] |
李熙莹, 梁靖茹, 张伟斌, 等. 基于航拍视频构建风险指数的交织区拥堵识别方法[J]. 铁道科学与工程学报, 2023, 20(2): 494-505. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202302013.htm
LI Xi-ying, LIANG Jing-ru, ZHANG Wei-bin, et al. Congestion recognition method in weaving sections by constructing risk index based on aerial video[J]. Journal of Railway Science and Engineering, 2023, 20(2): 494-505. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202302013.htm
|
[2] |
VAN BEINUM A, FARAH H, WEGMAN F, et al. Driving behaviour at motorway ramps and weaving segments based on empirical trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 426-441. doi: 10.1016/j.trc.2018.05.018
|
[3] |
HAO Wei, ZHANG Zhao-lei, GAO Zhi-bo, et al. Research on mandatory lane-changing behavior in highway weaving sections[J]. Journal of Advanced Transportation, 2020, 2020: 1-9.
|
[4] |
张卫华, 刘嘉茗, 解立鹏, 等. 网联混合环境快速路交织区自动驾驶车辆换道模型[J]. 吉林大学学报(工学版), 2022, DOI: 10.13229/j.cnki.jdxbgxb20220990.
ZHANG Wei-hua, LIU Jia-ming, XIE Li-peng, et al. Lane-changing model of autonomous vehicle in weaving area of expressway in intelligent and connected mixed environment[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, DOI: 10.13229/j.cnki.jdxbgxb20220990.ZHANG(inChinese)
|
[5] |
陈吉清, 翁楚滨, 兰凤崇. 智能车辆换道潜在冲突分析与风险量化方法[J]. 汽车工程, 2021, 43(11): 1565-1576, 1586. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202111001.htm
CHEN Ji-qing, WENG Chu-bin, LAN Feng-chong. Potential conflict analysis and risk quantification method of intelligent vehicle lane change[J]. Automotive Engineering, 2021, 43(11): 1565-1576, 1586. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202111001.htm
|
[6] |
BHA M, GHULAM H. A simple lane change model for microscopic traffic flow simulation in weaving sections[J]. Transportation Letters, 2011, 3(4): 231-251. doi: 10.3328/TL.2011.03.04.231-251
|
[7] |
PAN T L, LAM W H K, SUMALEE A, et al. Modeling the impacts of mandatory and discretionary lane-changing maneuvers[J]. Transportation Research Part C: Emerging Technologies, 2016, 68: 403-424. doi: 10.1016/j.trc.2016.05.002
|
[8] |
YUAN Jing-hui, ABDEL A M, CAI Qing, et al. Investigating drivers' mandatory lane change behavior on the weaving section of freeway with managed lanes: a driving simulator study[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 62: 11-32. doi: 10.1016/j.trf.2018.12.007
|
[9] |
WAN Xia, JIN P J, GU Hai-yan, et al. Modeling freeway merging in a weaving section as a sequential decision-making process[J]. Journal of Transportation Engineering, Part A: Systems, 2017, 143(5): 05017002. doi: 10.1061/JTEPBS.0000048
|
[10] |
蒋渊德, 朱冰, 赵祥模, 等. 面向自动驾驶汽车测试的交通车辆交互过程建模[J]. 汽车工程, 2022, 44(12): 1825-1833. doi: 10.19562/j.chinasae.qcgc.2022.12.004
JIANG Yuan-de, ZHU Bing, ZHAO Xiang-mo, et al. Modeling of traffic vehicle interaction for autonomous vehicle testing[J]. Automotive Engineering, 2022, 44(12): 1825-1833. (in Chinese) doi: 10.19562/j.chinasae.qcgc.2022.12.004
|
[11] |
张荣辉, 游峰, 初鑫男, 等. 车-车协同下无人驾驶车辆的换道汇入控制方法[J]. 中国公路学报, 2018, 31(4): 180-191. doi: 10.19721/j.cnki.1001-7372.2018.04.022
ZHANG Rong-hui, YOU Feng, CHU Xin-nan, et al. Lane change merging control method for unmanned vehicle under V2V cooperative environment[J]. China Journal of Highway and Transport, 2018, 31(4): 180-191. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2018.04.022
|
[12] |
陈荔, 张驰, 王博, 等. 隧道与互通出口小净距路段换道可靠性研究[J]. 中国公路学报, 2022, 35(9): 51-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202209005.htm
CHEN Li, ZHANG Chi, WANG Bo, et al. Research of lane changing reliability on short distance section between tunnel and interchange exit[J]. China Journal of Highway and Transport, 2022, 35(9): 51-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202209005.htm
|
[13] |
单肖年, 万长薪, 李志斌, 等. 智能网联环境下多车道异质交通流建模与仿真[J]. 交通运输系统工程与信息, 2022, 22(6): 74-84. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202206008.htm
SHAN Xiao-nian, WAN Chang-xin, LI Zhi-bin, et al. Modeling and simulation of multi-lane heterogeneous traffic flow in intelligent and connected vehicle environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 74-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202206008.htm
|
[14] |
ZHOU Hui-ping, ITOH M. How does a driver perceive risk when making decision of lane-changing?[J]. IFAC—PapersOnLine, 2016, 49(19): 60-65. doi: 10.1016/j.ifacol.2016.10.462
|
[15] |
吕能超, 杜子君, 吴超仲, 等. 多车道高速公路出口开口段安全特性分析[J]. 交通运输系统工程与信息, 2021, 21(3): 120-130. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103015.htm
LYU Neng-chao, DU Zi-jun, WU Chao-zhong, et al. Safety characteristics of exit section of multi-lane expressway[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 120-130. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103015.htm
|
[16] |
漆巍巍, 马思维, 周南杰. 高速公路分合流区车流元胞模型的构建及应用[J]. 华南理工大学学报(自然科学版), 2022, 50(10): 11-18.
QI Wei-wei, MA Si-wei, ZHOU Nan-jie. Construction and application of cellular automaton model of traffic flow in freeway diverging and merging areas[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(10): 11-18. (in Chinese)
|
[17] |
THEOFILATOS A, YANNIS G, KOPELIAS P, et al. Impact of real-time traffic characteristics on crash occurrence: preliminary results of the case of rare events[J]. Accident Analysis and Prevention, 2019, 130: 151-159. doi: 10.1016/j.aap.2017.12.018
|
[18] |
刘唐志, 毕辉云, 杨卓思, 等. 基于操纵量指标的合流区危险驾驶行为谱研究[J/OL]. 交通运输系统工程与信息, (2023-01-18)[2023-04-01].
LIU Tang-zhi, BI Hui-yun, YANG Zhuo-si, et al. Research on dangerous driving behavior spectrum in merging area based on maneuver indicators[J/OL]. Journal of Transportation Systems Engineering and Information Technology, (2023-01-18)[2023-04-01].
|
[19] |
FORMOSA N, QUDDUS M, ISON S, et al. Predicting real-time traffic conflicts using deep learning[J]. Accident Analysis and Prevention, 2020, 136: 105429. doi: 10.1016/j.aap.2019.105429
|
[20] |
FERREIRA S, COUTO A. A probabilistic approach towards a crash risk assessment of urban segments[J]. Transportation Research Part C: Emerging Technologies, 2015, 50: 97-105.
|
[21] |
ZHENG Lai, SAYED T, MANNERING F. Modeling traffic conflicts for use in road safety analysis: a review of analytic methods and future directions[J]. Analytic Methods in Accident Research, 2021, 29: 100142.
|
[22] |
WARD J R, AGAMENNONI G, WORRALL S, et al. Extending time to collision for probabilistic reasoning in general traffic scenarios[J]. Transportation Research Part C: Emerging Technologies, 2015, 51: 66-82.
|
[23] |
刘兵, 王锦锐, 赵荣达, 等. 面向换道冲突互信息的复杂交织区车辆风险识别[J]. 安全与环境学报, 2022, 22(4): 1768-1775. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202204010.htm
LIU Bing, WANG Jin-rui, ZHAO Rong-da, et al. Vehicle risk identification in complex weaving areas for conflicting mutual information on lane change[J]. Journal of Safety and Environment, 2022, 22(4): 1768-1775. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202204010.htm
|
[24] |
YUAN Chen, LI Ye, HUANG He-lai, et al. Using traffic flow characteristics to predict real-time conflict risk: a novel method for trajectory data analysis[J]. Analytic Methods in Accident Research, 2022, 35: 100217.
|
[25] |
温惠英, 李秋灵, 赵胜. 快速路合流区大型车换道时空特征及风险研究[J]. 华南理工大学学报(自然科学版), 2022, 50(5): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202205002.htm
WEN Hui-ying, LI Qiu-ling, ZHAO Sheng. Research on spatiotemporal characteristic and risk of lane-changing behaviors of large vehicles in expressway merging area[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(5): 11-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG202205002.htm
|
[26] |
刘兵, 王锦锐, 谢济铭, 等. 微观轨迹数据驱动的交织区换道概率分布模型[J]. 汽车安全与节能学报, 2022, 13(2): 333-340. https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN202202014.htm
LIU Bing, WANG Jin-rui, XIE Ji-ming, et al. Microscopic trajectory data-driven probability distribution model for weaving area of channel change[J]. Journal of Automotive Safety and Energy, 2022, 13(2): 333-340. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCAN202202014.htm
|
[27] |
谢济铭. 考虑车辆行驶行为的山地城市干线复杂交织区交通流建模与分析[D]. 重庆: 重庆交通大学, 2020.
XIE Ji-ming. Traffic flow modeling and analysis on complex weaving area of mountain city trunk road considering vehicle driving behaviors[D]. Chongqing: Chongqing Jiaotong University, 2020. (in Chinese)
|
[28] |
XING Lu, HE Jie, ABDEL-ATY M, et al. Examining traffic conflicts of up stream toll plaza area using vehicles trajectory data[J]. Accident Analysis and Prevention, 2019, 125: 174-187.
|
[29] |
谢济铭, 秦雅琴, 彭博, 等. 多车道交织区车辆跟驰行为风险判别与冲突预测[J]. 交通运输系统工程与信息, 2021, 21(3): 131-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103016.htm
XIE Ji-ming, QIN Ya-qin, PENG Bo, et al. Risk discrimination and conflict prediction of vehicle-following behavior in multi-lane weaving sections[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 131-139. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103016.htm
|
[30] |
吴晓建, 燕冬, 王爱春, 等. 融合前车轨迹预测的改进人工势场轨迹规划研究[J]. 汽车工程, 2021, 43(12): 1752-1761,1779. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202112003.htm
WU Xiao-jian, YAN Dong, WANG Ai-chun, et al. Research on improved artificial potential field path planning integrating prediction of preceding vehicle trajectory[J]. Automotive Engineering, 2021, 43(12): 1752-1761, 1779. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202112003.htm
|
[31] |
王可, 陆键, 蒋愚明. 基于车辆行驶轨迹的道路不良驾驶行为谱构建与特征值计算方法[J]. 交通运输工程学报, 2020, 20(6): 236-249. doi: 10.19818/j.cnki.1671-1637.2020.06.021
WANG Ke, LU Jian, JIANG Yu-ming. Abnormal road driving behavior spectrum establishment and characteristic value calculation method based on vehicle driving trajectory[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 236-249. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.021
|
[32] |
曾德宇, 梁泽逍, 吴宗泽. 基于加权核范数和L2, 1范数的最优均值线性分类器[J]. 电子与信息学报, 2022, 44(5): 1602-1609. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202205011.htm
ZENG De-yu, LIANG Ze-xiao, WU Zong-ze. Optimal mean linear classifier via weighted nuclear norm and L2, 1 norm[J]. Journal of Electronics and Information Technology, 2022, 44(5): 1602-1609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX202205011.htm
|
[33] |
杨飞, 郭煜东, JIN J P, 等. 基于手机传感器数据的交通出行调查实证评估[J]. 交通运输工程学报, 2020, 20(1): 226-238. doi: 10.19818/j.cnki.1671-1637.2020.01.019
YANG Fei, GUO Yu-dong, JIN J P, et al. Empirical evaluation of travel survey based on mobile phone sensor data[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 226-238. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.019
|
[34] |
XUE Qing-wen, XING Ying-ying, LU Jian. An integrated lane change prediction model incorporating traffic context based on trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2022, 141: 103738.
|
[35] |
YI De-wei, SU Jin-ya, LIU Cun-jia, et al. A machine learning based personalized system for driving state recognition[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 241-261.
|
[36] |
李秋谷. 隧道出口近邻区车辆换道意图辨识与轨迹预测[D]. 昆明: 昆明理工大学, 2022.
LI Qiu-gu. Vehicle lane change intention recognition and trajectory prediction in tunnel exit near-neighborhood[D]. Kunming: Kunming University of Science and Technology, 2022. (in Chinese)
|
[37] |
SINGH P, CHAUDHURY S, PANIGRAHI B K. Hybrid MPSO-CNN: multi-level particle swarm optimized hyperparameters of convolutional neural network[J]. Swarm and Evolutionary Computation, 2021, 63: 100863.
|
[38] |
谢济铭, 夏玉兰, 秦雅琴, 等. 基于双向长短期记忆网络的城市快速路合流区车速预测[J/OL]. 西南交通大学学报, (2022-07-06)[2022-10-19].
XIE Ji-ming, XIA Yu-lan, QIN Ya-qin, et al. Traffic speed prediction in merging zone of urban expressway based on bidirectional long short-term memory network[J/OL]. Journal of Southwest Jiaotong University, (2022-07-06)[2022-10-19].
|
[39] |
ZHONG Jing-jing, TSE P W, WANG Dong. Novel Bayesian inference on optimal parameters of support vector machines and its application to industrial survey data classification[J]. Neurocomputing, 2016, 211: 159-171.
|
[40] |
魏佳恒, 郭惠勇. 基于贝叶斯优化BiLSTM模型的输电塔损伤识别[J]. 振动与冲击, 2023, 42(1): 238-248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202301028.htm
WEI Jia-heng, GUO Hui-yong. Damage identification of transmission tower based on BO-BiLSTM model[J]. Journal of Vibration and Shock, 2023, 42(1): 238-248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202301028.htm
|
[41] |
于靖宇, 魏海平, 郭宏伟, 等. 贝叶斯优化模糊C均值的城市交通状态判别方法[J]. 测绘科学技术学报, 2021, 38(6): 653-658. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC202106016.htm
YU Jing-yu, WEI Hai-ping, GUO Hong-wei, et al. Urban traffic state identification based on BO-FCM[J]. Journal of Geomatics Science and Technology, 2021, 38(6): 653-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC202106016.htm
|
[42] |
秦雅琴, 李秋谷, 赵鹏燕, 等. 基于多分类Adaboost算法的驾驶人风险感知倾向研究[J]. 中国安全科学学报, 2022, 32(4): 141-147. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202204021.htm
QIN Ya-qin, LI Qiu-gu, ZHAO Peng-yan, et al. Research on risk perception tendency of drivers based on multi-class Adaboost algorithm[J]. China Safety Science Journal, 2022, 32(4): 141-147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202204021.htm
|