Volume 23 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
WANG Pu, WANG Shu-guo, WANG Meng, ZHAO Zhen-hua, SI Dao-lin, MA Si-yuan, SUN Zhao-liang. Number selection and structural optimization of 400 km·h-1 high-speed turnout[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 114-126. doi: 10.19818/j.cnki.1671-1637.2023.03.008
Citation: WANG Pu, WANG Shu-guo, WANG Meng, ZHAO Zhen-hua, SI Dao-lin, MA Si-yuan, SUN Zhao-liang. Number selection and structural optimization of 400 km·h-1 high-speed turnout[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 114-126. doi: 10.19818/j.cnki.1671-1637.2023.03.008

Number selection and structural optimization of 400 km·h-1 high-speed turnout

doi: 10.19818/j.cnki.1671-1637.2023.03.008
Funds:

National Natural Science Foundation of China 51878661

Science and Technology Research and Development Project of China State Railway Group Co., Ltd P2021G053

Major Project of China Academy of Railway Sciences Co., Ltd 2022YJ177

More Information
  • Author Bio:

    WANG Pu(1988-), male, associate researcher, PhD, wpwp2012@yeah.net

    WANG Shu-guo(1974-), male, researcher, PhD, zzddxx4473@sina.com.

  • Received Date: 2022-12-21
    Available Online: 2023-07-07
  • Publish Date: 2023-06-25
  • According to the demand for further improving the operating speed of high-speed railways in China, the number selection and structural optimization methods of a 400 km·h-1 high-speed turnout were studied systematically. Based on the vehicle-turnout coupling dynamics simulation, the correlation between turnout number and ride comfort was analyzed, and the suggestions for number selection were given. The influence of turnout linetype on the dynamics performance was studied, the principle of utilizing existing turnout sleepers was considered, and a linetype optimization scheme was proposed. A prototype test platform for the switch rail conversion of the No.18 KEZHUANXIAN turnout was established. The influencing factors and mechanisms of insufficient switch rail displacement were studied, and a control method of the insufficient displacement was proposed. A calculation model of track stiffness in the turnout area was established based on the finite element theory. According to on-site measured data of rail dynamic displacement in the turnout area, a target value and a homogenization scheme for track stiffness were proposed. Research results indicate that under the condition of the existing station layout plan, it is recommended to choose the No.18 turnout as the 400 km·h-1 high-speed turnout. The mutual distance of the 400 km·h-1 high-speed turnout can be increased to 28 mm, which can significantly improve the wear resistance and service life of the switch rail and can utilize the existing turnout sleepers. By comprehensively considering the system matching design, manufacturing process, combination requirements of track maintenance and electrical divisions, and other factors, it is recommended to reduce the distance from the third traction point to the fixed end by 600 mm, which can reduce the insufficient switch rail displacement. At the same time, the minimum flangeway and the traction force of the third traction point meet the code requirements. In addition, the structural design method of high-speed turnout crossings should be improved, in which the elastic deformation state of the point rail should be determined according to the actual forces, and the connectors and point rail conversion should be designed on this basis. It is also recommended that the target stiffness of the turnout area should be reduced from 25±5 kN·mm-1 to 23±3 kN·mm-1.

     

  • loading
  • [1]
    王平, 陈嵘, 徐井芒, 等. 高速铁路道岔系统理论与工程实践研究综述[J]. 西南交通大学学报, 2016, 51(2): 357-372. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602016.htm

    WANG Ping, CHEN Rong, XU Jing-mang, et al. Theories and engineering practices of high-speed railway turnout system: survey and review[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 357-372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602016.htm
    [2]
    李金城, 丁军君, 杨九河, 等. 高速道岔发展及研究现状分析[J]. 铁道标准设计, 2020, 64(3): 54-60. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202003010.htm

    LI Jin-cheng, DING Jun-jun, YANG Jiu-he, et al. Analysis of the development and research status of high-speed turnout[J]. Railway Standard Design, 2020, 64(3): 54-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202003010.htm
    [3]
    王树国, 司道林. 高速铁路道岔区段轮轨关系深化研究报告[R]. 北京: 中国铁道科学研究院集团有限公司, 2016.

    WANG Shu-guo, SI Dao-lin. Deepening research report on wheel-rail relationship at turnout section of high-speed railway[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2016. (in Chinese)
    [4]
    王树国. 我国铁路道岔现状与发展[J]. 铁道建筑, 2015(10): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201510008.htm

    WANG Shu-guo. Current status and future development trend of railway turnouts in China[J]. Railway Engineering, 2015(10): 42-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201510008.htm
    [5]
    王树国. 高速铁路道岔质量分析报告[R]. 北京: 中国铁道科学研究院集团有限公司, 2020.

    WANG Shu-guo. Analysis report on turnout quality of high- speed railway[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2020. (in Chinese)
    [6]
    王璞. 高速铁路道岔钢轨磨耗发展规律的试验研究[J]. 铁道建筑, 2019, 59(7): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201907025.htm

    WANG Pu. Experimental study on laws of rail wear development of high-speed turnout[J]. Railway Engineering, 2019, 59(7): 109-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201907025.htm
    [7]
    黄传岳, 温浩, 杨怀志, 等. 高速铁路道岔区无砟轨道伤损现状及分类研究[J]. 铁道建筑, 2019, 59(6): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201906029.htm

    HUANG Chuan-yue, WEN Hao, YANG Huai-zhi, et al. Current damage status and classif ication of ballastless track damages of high speed railway turnouts[J]. Railway Engineering, 2019, 59(6): 117-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201906029.htm
    [8]
    王树国, 葛晶, 王猛, 等. 高速道岔关键技术试验研究[J]. 铁道学报, 2015, 37(1): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201501016.htm

    WANG Shu-guo, GE Jing, WANG Meng, et al. Experimental study on key technologies of high-speed turnout[J]. Journal of the China Railway Society, 2015, 37(1): 77-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201501016.htm
    [9]
    李金城, 丁军君, 李芾, 等. 高速道岔车辆动力学指标研究与过岔计算[J]. 铁道标准设计, 2020, 64(10): 157-162. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202010030.htm

    LI Jin-cheng, DING Jun-jun, LI Fu, et al. High-speed turnout vehicle dynamics index research and vehicle dynamics calculation[J]. Railway Standard Design, 2020, 64(10): 157-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS202010030.htm
    [10]
    王璞, 曾瑞东, 王树国. 高速铁路道岔尖轨不足位移控制方法[J]. 交通运输工程学报, 2022, 22(2): 87-98. doi: 10.19818/j.cnki.1671-1637.2022.02.006

    WANG Pu, ZENG Rui-dong, WANG Shu-guo. Control method for insufficient displacement of switch rail in high-speed railway turnout[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 87-98. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.02.006
    [11]
    王平, 徐井芒, 郝超江, 等. 时速400 km高速道岔设计关键技术[J]. 中国铁路, 2022(8): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202208001.htm

    WANG Ping, XU Jing-mang, HAO Chao-jiang, et al. Key factors for 400 km·h-1 high speed turnout technology[J]. China Railway, 2022(8): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202208001.htm
    [12]
    胡红军, 徐井芒. 400 km·h-1高速铁路道岔选型探讨[J]. 高速铁路技术, 2021, 12(2): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202102014.htm

    HU Hong-jun, XU Jing-mang. Discussion on selection of 400 km·h-1 high-speed turnout[J]. High Speed Railway Technology, 2021, 12(2): 79-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL202102014.htm
    [13]
    王平, 徐井芒, 刘大园, 等. 时速400km宽轨距高速铁路道岔设计关键技术[J]. 高速铁路技术, 2019, 10(1): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201901004.htm

    WANG Ping, XU Jing-mang, LIU Da-yuan, et al. Key technologies of 400 km·h-1 broad gauge turnout design for high speed railway[J]. High Speed Railway Technology, 2019, 10(1): 14-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSTL201901004.htm
    [14]
    DUTTA S, HARRISON T, WARD C P, et al. A new approach to railway track switch actuation: dynamic simulation and control of a self-adjusting switch[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(7): 779-790.
    [15]
    于浩, 王平, 温静, 等. 可动心轨转换锁闭力仿真研究[J]. 铁道科学与工程学报, 2020, 17(3): 533-539. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202003001.htm

    YU Hao, WANG Ping, WEN Jing, et al. Simulation and analysis of the movable rail conversion and locking force[J]. Journal of Railway Science and Engineering, 2020, 17(3): 533-539. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202003001.htm
    [16]
    RAIF L, PUDA B, HAVLÍK J, et al. Design of high-speed turnouts and crossings[J]. IOP Conference Series: Materials Science and Engineering, 2017, 236: 012044.
    [17]
    张连启. 郑徐客专420 km·h-1中国标准动车组综合试验研究[J]. 四川建筑, 2022, 42(5): 129-132. https://www.cnki.com.cn/Article/CJFDTOTAL-SCJI202205041.htm

    ZHANG Lian-qi. Comprehensive experimental study on 420 km·h-1 Chinese standard EMU on Zhengzhou-Xuzhou Passenger Dedicated Railway[J]. Sichuan Architecture, 2022, 42(5): 129-132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCJI202205041.htm
    [18]
    郭福安. 国外高速铁路的道岔设计[J]. 中国铁路, 2006(2): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG200602015.htm

    GUO Fu-an. Turnout design of foreign high-speed railway[J]. China Railway, 2006(2): 48-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG200602015.htm
    [19]
    何华武, 郭福安. 德国、法国、日本高速铁路道岔设计[J]. 世界轨道交通, 2010(5): 24-27.

    HE Hua-wu, GUO Fu-an. High-speed railway switch design in Germany, France and Japan[J]. World Railway, 2010(5): 24-27. (in Chinese)
    [20]
    聂宇. 高速列车-道岔系统动力学建模与耦合作用分析[D]. 兰州: 兰州交通大学, 2014.

    NIE Yu. Dynamic modeling and coupled effect analysis of high-speed train-turnout system[D]. Lanzhou: Lanzhou Jiaotong University, 2014. (in Chinese)
    [21]
    赵恒. CRH型动车组制动距离计算方法[J]. 中国机械, 2014(12): 68-69.

    ZHAO Heng. Calculation method of braking distance of CRH EMU[J]. Machine China, 2014(12): 68-69. (in Chinese)
    [22]
    王树国. 客运专线道岔关键技术试验研究总报告[R]. 北京: 中国铁道科学研究院集团有限公司, 2011.

    WANG Shu-guo. General report on key technology test and research of turnout for passenger dedicated line[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2011. (in Chinese)
    [23]
    王树国. 郑西客运专线渭南站桥上无缝道岔试验研究报告[R]. 北京: 中国铁道科学研究院集团有限公司, 2010.

    WANG Shu-guo. Experimental research report on seamless turnout on Weinan Station Bridge of Zhengzhou-Xi'an Passenger Dedicated Line[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2010. (in Chinese)
    [24]
    王树国. 京沪高速铁路先导段桥上无缝道岔试验研究报告[R]. 北京: 中国铁道科学研究院集团有限公司, 2011.

    WANG Shu-guo. Experimental research report on seamless turnout on bridge of pilot section of Beijing-Shanghai High Speed Railway[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2011. (in Chinese)
    [25]
    王树国. 京津城际铁路联调联试——道岔动力性能测试分报告[R]. 北京: 中国铁道科学研究院集团有限公司, 2008.

    WANG Shu-guo. Joint commissioning and test of Beijing-Tianjin Intercity Railway—sub report of turnout dynamic performance test[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2008. (in Chinese)
    [26]
    王树国. 武广可动心轨道岔动力性能试验报告[R]. 北京: 中国铁道科学研究院集团有限公司, 2009.

    WANG Shu-guo. Test report on dynamic performance of Wuhan-Guangzhou movable core track turnout[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2009. (in Chinese)
    [27]
    王树国. 京沪高速铁路先导段无砟道岔动力性能试验研究[R]. 北京: 中国铁道科学研究院集团有限公司, 2011.

    WANG Shu-guo. Experimental study on dynamic performance of ballastless turnout at pilot section of Beijing-Shanghai High Speed Railway[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2011. (in Chinese)
    [28]
    叶阳升. 郑徐客运专线高速综合试验研究报告[R]. 北京: 中国铁道科学研究院集团有限公司, 2016.

    YE Yang-sheng. High-speed comprehensive test and research report of Zhengzhou-Xuzhou Passenger Dedicated Line[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2016. (in Chinese)
    [29]
    秦航远. 基于多源检测数据分析与模型仿真的道岔状态分析及评价研究[D]. 北京: 中国铁道科学研究院集团有限公司, 2020.

    QIN Hang-yuan. State analysis and evaluation of turnout based on multi-source data analysis and model simulation[D]. Beijing: China Academy of Railway Sciences Co., Ltd., 2020. (in Chinese)
    [30]
    王璞, 王树国. 时速400公里高速道岔关键技术研究报告——分报告之二: 高速道岔设计关键技术研究报告[R]. 北京: 中国铁道科学研究院集团有限公司, 2018.

    WANG Pu, WANG Shu-guo. Research report on key technologies of 400 km·h-1 high-speed turnout—sub report 2: research report on key technologies of high-speed turnout design[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2018. (in Chinese)
    [31]
    骆焱, 侯爱滨. 时速350 km客运专线铁路可动心轨辙叉单开道岔的结构设计[J]. 铁道标准设计, 2009(5): 19-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200905009.htm

    LUO Yan, HOU Ai-bin. Structural design of single turnout of movable center rail frog on 350 km·h-1 passenger dedicated line[J]. Railway Standard Design, 2009(5): 19-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS200905009.htm
    [32]
    王猛, 王璞. 高速道岔关键技术深化研究报告[R]. 北京: 中国铁道科学研究院集团有限公司, 2020.

    WANG Meng, WANG Pu. Deepening research report on key technologies of high-speed turnout[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2020. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (411) PDF downloads(193) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return