Citation: | JIANG Ling-li, LI Shu-hui, LI Xue-jun, WANG Guang-bin, GAO Lian-bin. Health assessment method of traction motor bearing based on transfer learning and convolutional neural network[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 162-172. doi: 10.19818/j.cnki.1671-1637.2023.03.012 |
[1] |
张济民, 苏辉, 任乔, 等. 轨道交通永磁同步牵引系统发展概况与关键技术综述[J]. 交通运输工程学报, 2021, 21(6): 63-77. doi: 10.19818/j.cnki.1671-1637.2021.06.005
ZHANG Ji-min, SU Hui, REN Qiao, et al. Review on development and key technologies of permanent magnet synchronous traction system for rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 63-77. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.06.005
|
[2] |
邓浩衡, 易锦阳, 王烟平. 长沙轨道交通1号线牵引电机轴承电腐蚀原因分析及整改[J]. 电力机车与城轨车辆, 2019, 42(4): 65-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201904019.htm
DENG Hao-heng, YI Jin-yang, WANG Yan-ping. Cause analysis and rectification of electrical corrosion of traction motor for Changsha Rail Transit Line 1[J]. Electric Locomotives and Mass Transit Vehicles, 2019, 42(4): 65-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201904019.htm
|
[3] |
范彪. 广州地铁二号线A5型车牵引电机轴承电腐蚀问题调查分析及解决措施[J]. 机电工程技术, 2017, 46(2): 134-138. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF201702033.htm
FAN Biao. Investigation and analysis of the electric corrosion of the traction motor bearing of the A5 type car in Guangzhou Metro Line 2[J]. Mechanical and Electrical Engineering Technology, 2017, 46(2): 134-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKF201702033.htm
|
[4] |
贾正阳, 宋俊杰, 汪久根, 等. 考虑绝缘性能的变频调速电机轴承优化设计[J]. 计算机集成制造系统, 2022, 28(9): 2726-2738. doi: 10.13196/j.cims.2022.09.007
JIA Zheng-yang, SONG Jun-jie, WANG Jiu-gen, et al. Optimal design of variable frequency speed regulation motor bearing considering insulation performance[J]. Computer Integrated Manufacturing Systems, 2022, 28(9): 2726-2738. (in Chinese) doi: 10.13196/j.cims.2022.09.007
|
[5] |
SHAHRIAR M R, BORGHESANI P, TAN A C C. Electrical signature analysis-based detection of external bearing faults in electromechanical drivetrains[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5941-5950. doi: 10.1109/TIE.2017.2782240
|
[6] |
崔石玉, 朱志宇. 基于参数迁移和一维卷积神经网络的海水泵故障诊断[J]. 振动与冲击, 2021, 40(24): 180-189. doi: 10.13465/j.cnki.jvs.2021.24.022
CUI Shi-yu, ZHU Zhi-yu. Seawater pump fault diagnosis based on parameter transfer and one-demensional convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(24): 180-189. (in Chinese) doi: 10.13465/j.cnki.jvs.2021.24.022
|
[7] |
贾峰, 李世豪, 沈建军, 等. 采用深度迁移学习与自适应加权的滚动轴承故障诊断[J]. 西安交通大学学报, 2022, 56(8): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202208001.htm
JIA Feng, LI Shi-hao, SHEN Jian-jun, et al. Fault diagnosis of rolling bearings using deep transfer learning and adaptive weighting[J]. Journal of Xi'an Jiaotong University, 2022, 56(8): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT202208001.htm
|
[8] |
RUAN Di-wang, ZHANG Fei-fan, YAN Jian-ping. Transfer learning between different working conditions on bearing fault diagnosis based on data augmentation[J]. IFAC-PapersOnLine, 2021, 54(1): 1193-1199. doi: 10.1016/j.ifacol.2021.08.141
|
[9] |
ZHANG Xu, CHEN Zhi-kui, GAO Jing, et al. A two-stage deep transfer learning model and its application for medical image processing in traditional Chinese medicine[J]. Knowledge-Based Systems, 2022, 239: 108060.
|
[10] |
LI Jiang-kuan, LIN Meng, LI Yan-kai, et al. Transfer learning with limited labeled data for fault diagnosis in nuclear power plants[J]. Nuclear Engineering and Design, 2022, 390: 111690.
|
[11] |
WANG Dong, TSUI K L, MIAO Qiang. Prognostics and health management: a review of vibration based bearing and gear health indicators[J]. IEEE Access, 2018, 6: 665-676.
|
[12] |
LEI Ya-guo, LI Nai-peng, GUO Liang, et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104: 799-834.
|
[13] |
MINHAS A S, SINGH S. A new bearing fault diagnosis approach combining sensitive statistical features with improved multiscale permutation entropy method[J]. Knowledge-Based Systems, 2021, 218: 106883.
|
[14] |
陈骏杰, 师蔚, 胡定玉. 基于IMF聚合与SVD的城轨车辆牵引电机轴承故障诊断[J]. 测控技术, 2017, 36(1): 14-17, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS201701004.htm
CHEN Jun-jie, SHI Wei, HU Ding-yu. Fault diagnosis for traction motor rolling bearings in urban rail vehicles based on IMF aggregation and SVD[J]. Measurement and Control Technology, 2017, 36(1): 14-17, 22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS201701004.htm
|
[15] |
RAI A, UPADHYAY S H. Bearing performance degradation assessment based on a combination of empirical mode decomposition and K-medoids clustering[J]. Mechanical Systems and Signal Processing, 2017, 93: 16-29.
|
[16] |
XU F, SONG X B, TSUI K L, et al. Bearing performance degradation assessment based on ensemble empirical mode decomposition and affinity propagation clustering[J]. IEEE Access, 2019, 7: 54623-54637.
|
[17] |
LI Yao-long, LI Hong-ru, WANG Bing, et al. Rolling element bearing performance degradation assessment using variational mode decomposition and Gath-Geva clustering time series segmentation[J]. International Journal of Rotating Machinery, 2017, 2017: 2598169.
|
[18] |
FENG Fu-zhou, WU Chun-zhi, ZHU Jun-zhen, et al. Research on multitask fault diagnosis and weight visualization of rotating machinery based on convolutional neural network[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42: 603.
|
[19] |
XIE Y, ZHANG T. Fault diagnosis for rotating machinery based on convolutional neural network and empirical mode decomposition[J]. Shock and Vibration, 2017, 2017: 3084197.
|
[20] |
刘世林, 陈里里. 基于VMD-SPWVD-CNN的滚动轴承故障智能诊断[J]. 组合机床与自动化加工技术, 2022, 2022(4): 62-65, 69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC202204014.htm
LIU Shi-lin, CHEN Li-li. Intelligent fault diagnosis of rolling bearing based on VMD-SPWVD-CNN[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2022, 2022(4): 62-65, 69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC202204014.htm
|
[21] |
宋庭新, 黄继承, 刘尚奇, 等. 小样本下基于DWT和2D-CNN的齿轮故障诊断方法[J]. 计算机集成制造系统,
SONG Ting-xin, HUANG Ji-cheng, LIU Shang-qi, et al. Gear fault diagnosis method based on DWT and 2D-CNN in small samples[J]. Computer Integrated Manufacturing Systems,
|
[22] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.
|
[23] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
|
[24] |
庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39. https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201501003.htm
ZHUANG Fu-zhen, LUO Ping, HE Qing, et al. Survey on transfer learning research[J]. Journal of Software, 2015, 26(1): 26-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RJXB201501003.htm
|
[25] |
王凯, 李元辉. 迁移学习在机械设备预测性维护领域的应用综述[J]. 中国仪器仪表, 2019(12): 64-68. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYQB201912016.htm
WANG Kai, LI Yuan-hui. Summary of application of transfer learning in predictive maintenance of machinery and equipment[J]. China Instrumentation, 2019(12): 64-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZYQB201912016.htm
|
[26] |
QIAN Chen-hui, ZHU Jun-jun, SHEN Ye-hu, et al. Deep transfer learning in mechanical intelligent fault diagnosis: application and challenge[J]. Neural Processing Letters, 2022, 54(3): 2509-2531.
|
[27] |
ZHUANG Fu-zhen, QI Zhi-yuan, DUAN Ke-yu, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76.
|
[28] |
雷亚国, 韩天宇, 王彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55(16): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201916001.htm
LEI Ya-guo, HAN Tian-yu, WANG Biao, et al. XJTU-SY rolling element bearing accelerated life test datasets: a tutoria[J]. Journal of Mechanical Engineering, 2019, 55(16): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201916001.htm
|