Citation: | SHAO Hai-dong, LI Wei, LIN Jian, MIN Zhi-shan. Multi-mode data augmentation and fault diagnosis of gearbox using improved ACGAN[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 188-197. doi: 10.19818/j.cnki.1671-1637.2023.03.014 |
[1] |
雷亚国, 许学方, 蔡潇, 等. 面向机械装备健康监测的数据质量保障方法研究[J]. 机械工程学报, 2021, 57(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202104001.htm
LEI Ya-guo, XU Xue-fang, CAI Xiao, et al. Research on data quality assurance for health condition monitoring of machinery[J]. Journal of Mechanical Engineering, 2021, 57(4): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202104001.htm
|
[2] |
朱海燕, 王超文, 邬平波, 等. 基于小滚轮高频激励的高速列车齿轮箱箱体振动试验[J]. 交通运输工程学报, 2020, 20(5): 135-150. doi: 10.19818/j.cnki.1671-1637.2020.05.011
ZHU Hai-yan, WANG Chao-wen, WU Ping-bo, et al. High-speed train gearbox housing vibration test based on small roller high-frequency excitation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 135-150. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.011
|
[3] |
江星星, 宋秋昱, 朱忠奎, 等. 基于收敛趋势变分模式分解的齿轮箱故障诊断方法[J]. 交通运输工程学报, 2022, 22(1): 177-189. doi: 10.19818/j.cnki.1671-1637.2022.01.015
JIANG Xing-xing, SONG Qiu-yu, ZHU Zhong-kui, et al. Gearbox fault diagnosis method based on convergent trend-guided variational mode decomposition[J]. Journal of Traffic and Transportation Engineering, 2022, 22(1): 177-189. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.01.015
|
[4] |
SHAO Hai-dong, LIN Jing, ZHANG Liang-wei, et al. A novel approach of multisensory fusion to collaborative fault diagnosis in maintenance[J]. Information Fusion, 2021, 74: 65-76. doi: 10.1016/j.inffus.2021.03.008
|
[5] |
ZHAO Hui-min, LIU Jie, CHEN Hua-yue, et al. Intelligent diagnosis using continuous wavelet transform and gauss convolutional deep belief network[J]. IEEE Transactions on Reliability, 2020, 197: 105883.
|
[6] |
邵海东, 张笑阳, 程军圣, 等. 基于提升深度迁移自动编码器的轴承智能故障诊断[J]. 机械工程学报, 2020, 56(9): 84-90. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009011.htm
SHAO Hai-dong, ZHANG Xiao-yang, CHENG Jun-sheng, et al. Intelligent fault diagnosis of bearing using enhanced deep transfer auto-encoder[J]. Journal of Mechanical Engineering, 2020, 56(9): 84-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202009011.htm
|
[7] |
张龙, 甄灿壮, 熊国良, 等. 基于深度时频特征的机车轴承故障诊断[J]. 交通运输工程学报, 2021, 21(6): 247-258. doi: 10.19818/j.cnki.1671-1637.2021.06.019
ZHANG Long, ZHEN Can-zhuang, XIONG Guo-liang, et al. Locomotive bearing fault diagnosis based on deep time-frequency features[J]. Journal of Traffic and Transportation Engineering, 2021, 21(6): 247-258. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.06.019
|
[8] |
池永为, 杨世锡, 焦卫东. 基于LSTM-RNN的滚动轴承故障多标签分类方法[J]. 振动、测试与诊断, 2020, 40(3): 563-571, 629. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202003021.htm
CHI Yong-wei, YANG Shi-xi, JIAO Wei-dong. A multi-label fault classification method for rolling bearing based on LSTM-RNN[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40(3): 563-571, 629. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202003021.htm
|
[9] |
SURENDRAN R, KHALAF O, ROMERO C. Deep learning based intelligent industrial fault diagnosis model[J]. Computers, Materials and Continua, 2022, 70(3): 6323-6338. doi: 10.32604/cmc.2022.021716
|
[10] |
CHEN Hong-tian, JIANG Bing, DING S, et al. Data-driven fault diagnosis for traction systems in high-speed trains: a survey, challenges, and perspectives[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1700-1716.
|
[11] |
ZHAO Rui, YAN Ru-qiang, CHEN Zheng-hua, et al. Deep learning and its applications to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115: 213-237.
|
[12] |
沈长青, 王旭, 王冬, 等. 基于多尺度卷积类内迁移学习的列车轴承故障诊断[J]. 交通运输工程学报, 2020, 20(5): 151-164. doi: 10.19818/j.cnki.1671-1637.2020.05.012
SHEN Chang-qing, WANG Xu, WANG Dong, et al. Multi-scale convolution intra-class transfer learning for train bearing fault diagnosis[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 151-164. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.012
|
[13] |
邵海东, 肖一鸣, 颜深. 仿真数据驱动的改进无监督域适应轴承故障诊断[J]. 机械工程学报, 2023, 59(3): 76-85. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202303008.htm
SHAO Hai-dong, XIAO Yi-ming, YAN Shen. Simulation data-driven enhanced unsupervised domain adaptation for bearing fault diagnosis[J]. Journal of Mechanical Engineering, 2023, 59(3): 76-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202303008.htm
|
[14] |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3: 2672-2680.
|
[15] |
WANG Zi-rui, WANG Jun, WANG You-ren. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition[J]. Neurocomputing, 2018, 310(8): 213-222.
|
[16] |
何强, 唐向红, 李传江, 等. 负载不平衡下小样本数据的轴承故障诊断[J]. 中国机械工程, 2021, 32(10): 1164-1171, 1180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202110004.htm
HE Qiang, TANG Xiang-hong, LI Chuan-jiang, et al. Bearing fault diagnosis method based on small sample data under unbalanced loads[J]. China Mechanical Engineering, 2021, 32(10): 1164-1171, 1180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202110004.htm
|
[17] |
戴俊, 王俊, 朱忠奎, 等. 基于生成对抗网络和自动编码器的机械系统异常检测[J]. 仪器仪表学报, 2019, 40(9): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201909002.htm
DAI Jun, WANG Jun, ZHU Zhong-kui, et al. Anomaly detection of mechanical systems based on generative adversarial network and auto-encoder[J]. Chinese Journal of Scientific Instrument, 2019, 40(9): 16-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB201909002.htm
|
[18] |
LIU Shen, CHEN Jing-long, QU Cheng, et al. LOSGAN: latent optimized stable GAN for intelligent fault diagnosis with limited data in rotating machinery[J]. Measurement Science and Technology, 2021, 32: 045101.
|
[19] |
GONG Jia-liang, XU Xiao-dong, LEI Ying-ke. Unsupervised specific emitter identification method using radio-frequency fingerprint embedded InfoGAN[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 2898-2912.
|
[20] |
RASTOGI R, GANGNANI R. Semi-supervised multi category classification with generative adversarial networks[C]//Springer. 2019 International Conference on Pattern Recognition and Machine Intelligence. Berlin: Springer, 2019: 286-294.
|
[21] |
ODENA A, OLAH C, SHLENS J. Conditional image synthesis with auxiliary classifier GANs[C]//ACM. 2017 International Conference on Machine Learning. Sydney: ACM, 2017: 2642-2651.
|
[22] |
SHAO Si-yu, WANG Pu, YAN Ru-qiang. Generative adversarial networks for data augmentation in machine fault diagnosis[J]. Computers in Industry, 2019, 106: 85-93.
|
[23] |
GUO Qing-wen, LI Yi-bin, SONG Yan, et al. Intelligent fault diagnosis method based on full 1-D convolutional generative adversarial network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(3): 2044-2053.
|
[24] |
肖雄, 肖宇雄, 张勇军, 等. 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J]. 中国电机工程学报, 2021, 41(2): 738-749. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202102032.htm
XIAO Xiong, XIAO Yu-xiong, ZHANG Yong-jun, et al. Research on the application of the data augmentation method based on 2D gray pixel images in the fault diagnosis of motor bearing[J]. Proceedings of the CSEE, 2021, 41(2): 738-749. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC202102032.htm
|
[25] |
孙灿飞, 王友仁, 夏裕彬. 基于SCAE-ACGAN的直升机行星齿轮裂纹故障诊断[J]. 振动、测试与诊断, 2021, 41(3): 495-502, 620-621. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202103012.htm
SUN Can-fei, WANG You-ren, XIA Yu-bin. Fault diagnosis of helicopter planetary gear tooth crack based on SCAE-ACGAN[J]. Journal of Vibration, Measurement and Diagnosis, 2021, 41(3): 495-502, 620-621. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202103012.htm
|
[26] |
LEE M H, SEOK J H, Controllable generative adversarial network[J]. IEEE Access, 2019, 7: 28158-28169.
|
[27] |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//ACM. International Conference on Machine Learning. Sydney: ACM, 2017: 214-233.
|
[28] |
XIA Wei-hao, ZHANG Yu-lun, YANG Yu-jiu, et al. GAN inversion: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(3): 3121-3138.
|
[29] |
ALATAT H, SIEGEL D, LEE J. A systematic methodology for gearbox health assessment and fault classification[J]. Journal of Prognostics and Health Management, 2011, 2(1): 16-22.
|
[30] |
WEN Long, LI Xin-yu, GAO Liang, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998.
|
[31] |
马燕, 余海军, 钟发生, 等. 基于残差编解码网络的CT图像金属伪影校正[J]. 仪器仪表学报, 2020, 41(8): 160-169. https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202008018.htm
MA Yan, YU Hai-jun, ZHONG Fa-sheng, et al. CT metal artifact reduction based on the residual encoder-decoder network[J]. Chinese Journal of Scientific Instrument, 2020, 41(8): 160-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YQXB202008018.htm
|