Citation: | WU Na, NIE Xiao-xiong, GE Ying-en, ZHAO Xiang-mo. A method of heterogeneous truck platoon formation for low energy consumption based on vehicle ranking[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 248-258. doi: 10.19818/j.cnki.1671-1637.2023.03.019 |
[1] |
BIBEKA A, SONGCHITRUKSA P, ZHANG Y L. Assessing environmental impacts of ad-hoc truck platooning on multilane freeways[J]. Journal of Intelligent Transportation Systems, 2021, 25(3): 281-292. doi: 10.1080/15472450.2019.1608441
|
[2] |
ZHANG L L, CHEN F, MA X X, et al. Fuel economy in truck platooning: a literature overview and directions for future research[J]. Journal of Advanced Transportation, 2020, 2020: 2604012.
|
[3] |
BROWAND F, MCARTHUR J, RADOVICH C. Fuel saving achieved in the field test of two tandem trucks[R]. Berkeley: UC Berkeley, 2004.
|
[4] |
MICHAELIAN M, BROWAND F. Field experiments demonstrate fuel savings for close following[R]. Berkeley: UC Berkeley, 2000.
|
[5] |
谭二龙, 李宏海, 钟厚岳, 等. 基于轨迹数据的货车自发编队节油潜力估计[J]. 交通运输系统工程与信息, 2022, 22(1): 74-84. doi: 10.16097/j.cnki.1009-6744.2022.01.009
TAN Er-long, LI Hong-hai, ZHONG Hou-yue, et al. Estimating truck spontaneous platoon fuel-saving potential based on trajectory data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 74-84. (in Chinese) doi: 10.16097/j.cnki.1009-6744.2022.01.009
|
[6] |
YANG X T, HUANG K, ZHANG Z H, et al. Eco-driving system for connected automated vehicles: multi-objective trajectory optimization[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7837-7849. doi: 10.1109/TITS.2020.3010726
|
[7] |
CHOWDHURY T, PARK P Y, GINGERICH K. Operational impact of the through-traffic signal prioritization for heavy commercial vehicle platooning on urban arterials[J]. Transportation Research Record, 2023, 2677(2): 62-77. doi: 10.1177/03611981221127287
|
[8] |
YE Qian-wen, CHEN Xu-mei, LIAO Ruo-hua, et al. Development and evaluation of a vehicle platoon guidance strategy at signalized intersections considering fuel savings[J]. Transportation Research Part D: Transport and Environment, 2019, 77: 120-131. doi: 10.1016/j.trd.2019.10.020
|
[9] |
王姝. 面向货车队列速度优化的多车道高速公路货车车道管理策略研究[D]. 南京: 东南大学, 2020.
WANG Shu. Truck lane management strategies for speed optimized truck platooning in a multi-lane freeway[D]. Nanjing: Southeast University, 2020. (in Chinese)
|
[10] |
HU Yu-ying, CHEN Cai-lian, HE Jian-ping, et al. Eco-platooning for cooperative automated vehicles under mixed traffic flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(4): 2023-2034. doi: 10.1109/TITS.2021.3056122
|
[11] |
YANG Z, FENG Y H, LIU H X. A cooperative driving framework for urban arterials in mixed traffic conditions[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 102918. doi: 10.1016/j.trc.2020.102918
|
[12] |
JIANG S M, PAN T L, ZHONG R X, et al. Coordination of mixed platoons and eco-driving strategy for a signal-free intersection[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, DOI: 10.1109/TITS.2022.3211934.
|
[13] |
CHEN J, QIAN L J, XUAN L, et al. Hierarchical eco-driving control strategy for hybrid electric vehicle platoon at signalized intersections under partially connected and automated vehicle environment[J]. IET Intelligent Transport Systems, 2022, DOI: 10.1049/itr2.12325.
|
[14] |
SUN X T, WU H C, ABDOLMALEKI M, et al. Investigating the potential of truck platooning for energy savings: empirical study of the US national highway freight network[J]. Transportation Research Record, 2021, 2675(12): 784-796. doi: 10.1177/03611981211031231
|
[15] |
卢自宝, 田凯健, 方明星, 等. 基于运输成本的高速公路车辆协同调度与速度规划[J]. 控制与决策, https://doi.org/10.13195/j.kzyjc.2021.1797.
LU Zi-bao, TIAN Kai-jian, FANG Ming-xing, et al. Cooperative scheduling and speed planning of vehicles on highways based on transportation cost[J]. Control and Decision, https://doi.org/10.13195/j.kzyjc.2021.1797. (in Chinese)
|
[16] |
CHEN S K, WANG H, MENG Q. Autonomous truck scheduling for container transshipment between two seaport terminals considering platooning and speed optimization[J]. Transportation Research Part B: Methodological, 2021, 154: 289-315. doi: 10.1016/j.trb.2021.10.014
|
[17] |
XU W J, CUI T T, CHEN M H. Optimizing two-truck platooning with deadlines[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(1): 694-705. doi: 10.1109/TITS.2022.3213549
|
[18] |
ZHANG W, JENELIUS E, MA X L. Freight transport platoon coordination and departure time scheduling under travel time uncertainty[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 98: 1-23. doi: 10.1016/j.tre.2016.11.008
|
[19] |
LI Qian-wen, LI Xiao-ping. Trajectory planning for autonomous modular vehicle docking and autonomous vehicle platooning operations[J]. Transportation Research Part E: Logistics and Transportation Review, 2022, 166: 102886. doi: 10.1016/j.tre.2022.102886
|
[20] |
BOUCHERY Y, HEZARKHANI B, STAUFFER G. Coalition formation and cost sharing for truck platooning[J]. Transportation Research Part B: Methodological, 2022, 165: 15-34. doi: 10.1016/j.trb.2022.08.007
|
[21] |
JOHANSSON A, BAI T, JOHANSSON K H, et al. Platoon cooperation across carriers: from system architecture to coordination[J]. IEEE Intelligent Transportation Systems Magazine, 2023, 15(3): 132-144. doi: 10.1109/MITS.2022.3219997
|
[22] |
SCHOLL J, BOYSEN N, SCHOLL A. E-platooning: optimizing platoon formation for long-haul transportation with electric commercial vehicles[J]. European Journal of Operational Research, 2023, 304(2): 525-542. doi: 10.1016/j.ejor.2022.04.013
|
[23] |
ZENG Y K, WANG M, RAJAN R T. Decentralized coordination for truck platooning[J]. Computer-Aided Civil and Infrastructure Engineering, 2022, 37(15): 1997-2015. doi: 10.1111/mice.12899
|
[24] |
LARSSON E, SENNTON G, LARSON J. The vehicle platooning problem: computational complexity and heuristics[J]. Transportation Research Part C: Emerging Technologies, 2015, 60: 258-277. doi: 10.1016/j.trc.2015.08.019
|
[25] |
SIVANANDHAM S, GAJANAND M S. Comparison of platoon formations using departure time coordination heuristic[J]. International Journal of Operational Research, 2022, 43(1/2): 96-118. doi: 10.1504/IJOR.2022.121487
|
[26] |
VAN DE HOEF S, JOHANSSON K H, DIMAROGONAS D V. Fuel-efficient en route formation of truck platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1): 102-112. doi: 10.1109/TITS.2017.2700021
|
[27] |
LARSEN R, RICH J, RASMUSSEN T K. Hub-based truck platooning: potentials and profitability[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 127: 249-264. doi: 10.1016/j.tre.2019.05.005
|
[28] |
ABDOLMALEKI M, SHAHABI M, YIN Y F, et al. Itinerary planning for cooperative truck platooning[J]. Transportation Research Part B: Methodological, 2021, 153: 91-110. doi: 10.1016/j.trb.2021.08.016
|
[29] |
BOYSEN N, BRISKORN D, SCHWERDFEGER S. The identical-path truck platooning problem[J]. Transportation Research Part B: Methodological, 2018, 109: 26-39. doi: 10.1016/j.trb.2018.01.006
|
[30] |
SCHITO P, BRAGHIN F. Numerical and experimental investigation on vehicles in platoon[J]. SAE International Journal of Commercial Vehicles, 2012, 5(1): 63-71. doi: 10.4271/2012-01-0175
|
[31] |
樊贤俊. 车路协同背景下三种货运车辆队列节能仿真研究[D]. 长春: 吉林大学, 2021.
FAN Xian-jun. Simulation research on energy conservation of three types of freight vehicle platoon under the background of vehicle-road coordination[D]. Changchun: Jilin University, 2021. (in Chinese)
|
[32] |
ZHEN H, MOSHARAFIAN S, YANG J J, et al. Eco-driving trajectory planning of a heterogeneous platoon in urban environments[J]. IFAC-PapersOnLine, 2022, 55(24): 161-166. doi: 10.1016/j.ifacol.2022.10.278
|
[33] |
ESMAEILI S, KIM Y H. A platoon formation strategy for heterogeneous vehicle types at a signalized intersection[C]//IEEE. IEEE 25th Conference on Intelligent Transportation Systems. New York: IEEE, 2022: 3543-3548.
|
[34] |
HE X, WU X. Eco-driving advisory strategies for a platoon of mixed gasoline and electric vehicles in a connected vehicle system[J]. Transportation Research Part D: Transport and Environment, 2018, 63: 907-922. doi: 10.1016/j.trd.2018.07.014
|
[35] |
侯登凯, 范厚明, 任晓雪. 时变路网下多中心混合车队联合配送车辆路径优化[J]. 大连海事大学学报, 2022, 48(1): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS202201002.htm
HOU Deng-kai, FAN Hou-ming, REN Xiao-xue. Vehicle routing optimization of multi-center hybrid fleet joint distribution under time-varying road network[J]. Journal of Dalian Maritime University, 2022, 48(1): 11-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS202201002.htm
|
[36] |
LEE W J, KWAG S I, KO Y D. The optimal eco-friendly platoon formation strategy for a heterogeneous fleet of vehicles[J]. Transportation Research Part D: Transport and Environment, 2021, 90: 102664. doi: 10.1016/j.trd.2020.102664
|
[37] |
BIGGS D C, AKCELIK R. An energy-related model of instantaneous fuel consumption[J]. Traffic Engineering and Control, 1986, 27(6): 320-325.
|
[38] |
WU X K, FREESE D, CABRERA A, et al. Electric vehicles' energy consumption measurement and estimation[J]. Transportation Research Part D: Transport and Environment, 2015, 34: 52-67. doi: 10.1016/j.trd.2014.10.007
|