Volume 23 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
DENG You-sheng, LI Long, SUN Ya-ni, YAO Zhi-gang, MENG Li-qing. Bearing capability of collapsible loess subgrade through cement-fly ash treatment[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 92-103. doi: 10.19818/j.cnki.1671-1637.2023.04.006
Citation: DENG You-sheng, LI Long, SUN Ya-ni, YAO Zhi-gang, MENG Li-qing. Bearing capability of collapsible loess subgrade through cement-fly ash treatment[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 92-103. doi: 10.19818/j.cnki.1671-1637.2023.04.006

Bearing capability of collapsible loess subgrade through cement-fly ash treatment

doi: 10.19818/j.cnki.1671-1637.2023.04.006
Funds:

National Natural Science Foundation of China 51878554

Natural Science Basic Research Project of Shaanxi Province 2018JZ5012

More Information
  • Author Bio:

    DENG You-sheng(1969-), male, professor, PhD, dengys2009@126.com

    LI Long(1993-), male, doctoral student, a2507952012_a@163.com

  • Received Date: 2023-03-11
    Available Online: 2023-09-08
  • Publish Date: 2023-08-25
  • To investigate the reinforcement mechanism of cement-fly ash post-grouting on pile-net composite subgrade in collapsible loess areas, the static load tests in laboratory were carried out on the grouted cement-fly ash gravel (CFG) piles, the influence of post-grouting on the collapsibility coefficient of the soil samples around the piles was analyzed, and the changing rules of additional stress, pile side friction resistance and pile tip resistance in the depth direction of post-grouting pile-net composite subgrade under vertical static load were studied. Based on the Boltzmann mathematical model and load transfer function, the reinforcement mechanism of pile side friction resistance and pile tip resistance was investigated, and their calculation formulas after grouting were given. The influence mechanisms of elastic modulus of pile, post-grouting depth, pile-net replacement rate, and cushion layer thickness on the bearing capacity of pile-net composite subgrade were discussed by the numerical simulation method. Research results indicate that under the same static load, the collapsibility coefficient of the cement-fly ash post-grouting soil around the pile is less than that of the natural soil sample and less than 0.015. After post-grouting, the vertical additional stress of the pile top in the pile-net composite subgrade gradually decreases under the static load, the vertical additional stress of the soil between the piles decreases first and then increases, and the pile side friction resistance increases by about 1.54 times compared with the un-grouting pile. With the increase in post-grouting depth, the maximum stress in the depth direction of pile body increases first and then decreases, and the maximum stress is obtained at the depth equal to pile length. When the pile-net replacement rate is doubled, the stress and settlement decrease in the depth direction, among which the peak stress decreases by 24% and settlement decreases by 26%. With the increase in cushion layer thickness in the pile-net composite subgrade, the stress in the depth direction of the subgrade gradually increases. Therefore, the cement-fly ash treatment of collapsible loess subgrade can weaken the collapsibility of subgrade soil and improve the bearing capacity. In the construction process, the effects of elastic modulus of pile, post-grouting depth, pile-net replacement rate and cushion thickness on the bearing capacity of the subgrade should be considered.

     

  • loading
  • [1]
    盛明强, 乾增珍, 杨文智, 等. 浸水饱和条件下黄土微型桩抗压和抗拔承载力试验[J]. 岩土工程学报, 2021, 43(12): 2258-2264. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112012.htm

    SHENG Ming-qiang, QIAN Zeng-zhen, YANG Wen-zhi, et al. Field compression and uplift tests on micropiles in collapsible loess under completely-soaked and saturated conditions[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2258-2264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202112012.htm
    [2]
    张延杰, 王旭, 梁庆国, 等. 浸水条件下湿陷性黄土地基群桩基础承载特性模型试验研究[J]. 岩土工程学报, 2021, 43(增1): 219-223. doi: 10.11779/CJGE2021S1040

    ZHANG Yan-jie, WANG Xu, LIANG Qing-guo, et al. Model tests on bearing behavior of pile groups in collapsible loess ground under water immersion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 219-223. (in Chinese) doi: 10.11779/CJGE2021S1040
    [3]
    杨重存. 黄土固化技术在公路工程中的应用及试验研究[D]. 西安: 长安大学, 2000.

    YANG Chong-cun. Application and experimental study of loess solidification technology in highway engineering[D]. Xi'an: Chang'an University, 2000. (in Chinese)
    [4]
    邓友生, 李龙, 刘俊聪, 等. 波纹塑料套管煤矸石CFG桩复合路基承载试验[J]. 中国公路学报, 2023, 36(4): 48-57. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202304005.htm

    DENG You-sheng, LI Long, LIU Jun-cong, et al. Load-bearing test on composite subgrade of coal gangue CFG pile with corrugated plastic[J]. China Journal of Highway and Transport, 2023, 36(4): 48-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202304005.htm
    [5]
    祁巧艳, 刘亚龙. 基于塑性理论的湿陷性黄土本构模型[J]. 兰州理工大学学报, 2015, 41(3): 117-121. doi: 10.13295/j.cnki.jlut.2015.03.025

    QI Qiao-yan, LIU Ya-long. Plastic theory-based wet-collapsible loess constitutive model[J]. Journal of Lanzhou University of Technology, 2015, 41(3): 117-121. (in Chinese) doi: 10.13295/j.cnki.jlut.2015.03.025
    [6]
    魏平, 魏静, 杨松林, 等. 高速铁路低路基桩网结构土工格栅动力特性[J]. 交通运输工程学报, 2017, 17(6): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201706006.htm

    WEI Ping, WEI Jing, YANG Song-lin, et al. Geogrid dynamic characteristics of pile-net structure in low subgrade of high-speed railway[J]. Journal of Traffic and Transportation Engineering, 2017, 17(6): 19-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201706006.htm
    [7]
    邓友生, 李龙, 赵衡, 等. 基于透明土的梅花桩沉桩挤土效应[J]. 湖南大学学报(自然科学版), 2022, 49(7): 205-213. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202207021.htm

    DENG You-sheng, LI Long, ZHAO Heng, et al. Plum-blossom pile penetration effect based on transparent soil[J]. Journal of Hunan University (Natural Sciences), 2022, 49(7): 205-213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202207021.htm
    [8]
    王永鑫, 邵生俊, 韩常领, 等. 湿陷性黄土砂井浸水试验的应用研究[J]. 岩土工程学报, 2018, 40(增1): 159-164, 7. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1027.htm

    WANG Yong-xin, SHAO Sheng-jun, HAN Chang-ling, et al. Application of sand drain immersion tests on collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 159-164, 7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2018S1027.htm
    [9]
    WANG Jia-ding, ZHANG Deng-fei, ZHANG Yong-shuang, et al. Variations in hydraulic properties of collapsible loess exposed to wetting and shearing[J]. Acta Geotechnica, 2022, 17(7): 2995-3015. doi: 10.1007/s11440-021-01427-y
    [10]
    ZHAO Meng, WU Hong-gang, GUO Wei, et al. Experimental study of the particle agglomeration on its mechanical properties of collapsible loess[J]. Frontiers in Earth Science, 2022, 10: 943383. doi: 10.3389/feart.2022.943383
    [11]
    穆青翼, 党影杰, 董琪, 等. 原状和压实黄土持水特性及湿陷性对比试验研究[J]. 岩土工程学报, 2019, 41(8): 1496-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908017.htm

    MU Qing-yi, DANG Ying-jie, DONG Qi, et al. Water-retention characteristics and collapsibity behaviors: comparison between intact and compacted loesses[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8): 1496-1504. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201908017.htm
    [12]
    苏忍, 张恒睿, 张稳军, 等. 兰州地铁大厚度湿陷性黄土地层的现场浸水试验研究[J]. 土木工程学报, 2020, 53(增1): 186-193. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2020S1030.htm

    SU Ren, ZHANG Heng-rui, ZHANG Wen-jun, et al. Immersion tests on self-weight collapsible loess site with large depth of Lanzhou metro line[J]. China Civil Engineering Journal, 2020, 53(S1): 186-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2020S1030.htm
    [13]
    徐硕昌, 刘德仁, 王旭, 等. 兰州新区大厚度湿陷性黄土宏细观参数试验研究[J]. 铁道科学与工程学报, 2022, 19(7): 1918-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202207014.htm

    XU Shuo-chang, LIU De-ren, WANG Xu, et al. Experimental study on macro and meso parameters of large thickness collapsible loess in Lanzhou New District[J]. Journal of Railway Science and Engineering, 2022, 19(7): 1918-1926. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202207014.htm
    [14]
    吴会东. 山西北部地区黄土湿陷性快速判定方法研究[J]. 铁道工程学报, 2021, 38(2): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202102007.htm

    WU Hui-dong. Research on a fast judgement method of loess collapsibility in northern Shanxi[J]. Journal of Railway Engineering Society, 2021, 38(2): 35-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202102007.htm
    [15]
    ZHENG Zi-yu, LI Xi-an, WANG Li, et al. A new approach to evaluation of loess collapsibility based on quantitative analyses of colloid-clay coating with statistical methods[J]. Engineering Geology, 2021, 288: 106167.
    [16]
    ZHANG Yan-jie, HAN Jian-long, WANG Xu, et al. Evaluation of loess collapsibility based on random field theory in Xi'an, China[J]. Mathematical Problems in Engineering, 2022, 2022: 8665061.
    [17]
    ZHONG Xiu-mei, LIANG Yu-xin, WANG Qian, et al. Evaluation and analysis of the effect of lignin amelioration on loess collapsibility[J]. Journal of Renewable Materials, 2022, 10(12): 3405-3424.
    [18]
    HANNA A, SOLIMAN S. Experimental investigation of foundation on collapsible soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(11): 04017085.
    [19]
    ZHANG Yang, JOHNSON A E, WHITE D J. Freeze-thaw performance of cement and fly ash stabilized loess[J]. Transportation Geotechnics, 2019, 21: 100279.
    [20]
    崔自治, 朱楠, 王晓芸. 黄土自重湿陷性评价的理论与试验研究[J]. 兰州理工大学学报, 2013, 39(6): 115-117. https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201306026.htm

    CUI Zi-zhi, ZHU Nan, WANG Xiao-yun. Theoretical and experimental research on evaluation of loess collapsible under overburden pressure[J]. Journal of Lanzhou University of Technology, 2013, 39(6): 115-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSGY201306026.htm
    [21]
    崔靖俞. 工业废料注浆加固湿陷性黄土的试验研究[D]. 西宁: 青海大学, 2020.

    CUI Jing-yu. Experimental study on grouting reinforcement of collapsible loess by industrial waste[D]. Xining: Qinghai University, 2020. (in Chinese)
    [22]
    朱苗淼, 朱武卫. 矿渣与工业废渣改良黄土的性能与机理研究进展[J]. 灾害学, 2022, 37(1): 129-133. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202201022.htm

    ZHU Miao-miao, ZHU Wu-wei. Research progress on properties and mechanism of loess modified by slag and industrial waste residue[J]. Journal of Catastrophology, 2022, 37(1): 129-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU202201022.htm
    [23]
    MEI Yuan, ZHANG Shu-min, HU Chang-ming, et al. Field test study on dynamic compaction in treatment of a deep collapsible loess foundation[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(10): 8059-8073.
    [24]
    张恩祥, 何腊平, 龙照, 等. 黄土地区刚-柔性桩复合地基的承载机理[J]. 交通运输工程学报, 2019, 19(4): 70-80. doi: 10.19818/j.cnki.1671-1637.2019.04.007

    ZHANG En-xiang, HE La-ping, LONG Zhao, et al. Bearing mechanism of composite foundation with rigid-flexible piles in loess area[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 70-80. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.04.007
    [25]
    周志军, 徐天宇, 徐甫, 等. 黄土地区不同成孔方式灌注桩压浆前后承载特性[J]. 交通运输工程学报, 2021, 21(4): 84-93. doi: 10.19818/j.cnki.1671-1637.2021.04.005

    ZHOU Zhi-jun, XU Tian-yu, XU Fu, et al. Bearing characteristics of cast-in-place piles with different hole-forming methods before and after grouting in loess area[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 84-93. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.005
    [26]
    熊彩凤, 徐甫, 冯泓鸣, 等. 黄土地区桥梁灌注桩桩端后注浆优化室内模型试验研究[J]. 铁道科学与工程学报, 2022, 19(6): 1585-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202206013.htm

    XIONG Cai-feng, XU Fu, FENG Hong-ming, et al. Laboratory model test study on optimization of post grouting at the end of bridge cast-in-place pile in loess area[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1585-1593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202206013.htm
    [27]
    贾剑青, 赵阳阳, 贾超, 等. 湿陷性黄土地基水泥土搅拌桩加固效果研究[J]. 铁道工程学报, 2022, 39(7): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202207003.htm

    JIA Jian-qing, ZHAO Yang-yang, JIA Chao, et al. Research on the reinforcement effect of cement-soil mixing pile on collapsible loess foundation[J]. Journal of Railway Engineering Society, 2022, 39(7): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC202207003.htm
    [28]
    马天忠, 孙晨东, 高玉广, 等. 浸水状态下湿陷性黄土场地螺旋灌注桩负摩阻力与土体湿陷规律试验[J]. 中国公路学报, 2022, 35(8): 151-161. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208014.htm

    MA Tian-zhong, SUN Chen-dong, GAO Yu-guang, et al. Experimental analysis on negative friction resistance of spiral cast-in-place piles and soil collapse law in collapsible loess site[J]. China Journal of Highway and Transport, 2022, 35(8): 151-161. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208014.htm
    [29]
    HOU Jian, LU Yi-yang, WANG Jian-an, et al. Calculation model of compaction coefficient of soil among SP-PSC pile group on collapsible loess foundation[J]. Applied Sciences, 2023, 13(6): 4003.
    [30]
    YE Shuai-hua, ZHAO Zhuang-fu, ZHU Yan-peng. Study on negative friction of pile foundation in single homogeneous soil layer in collapsible loess area of northwest China[J]. Arabian Journal of Geosciences, 2021, 14(12): 1137.
    [31]
    PHOAK S, LUO Ya-sheng, LI Sheng-nan. Influence of submergence on stabilization of loess in Shaanxi province by adding fly ash[J]. Applied Sciences, 2019, 9(1): 68.
    [32]
    肖宏彬. 竖向荷载作用下大直径桩的荷载传递理论及应用研究[D]. 长沙: 中南大学, 2005.

    XIAO Hong-bin. Theoretical and application research on load transfer of vertically loading large diameter piles[D]. Changsha: Central South University, 2005. (in Chinese)
    [33]
    陈仁朋, 陈金苗, 汪焱卫, 等. 桩网结构路基应力传递特性及累积沉降规律[J]. 土木工程学报, 2015, 48(增2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2044.htm

    CHEN Ren-peng, CHEN Jin-miao, WANG Yan-wei, et al. Stress transmission and cumulative settlement characteristics of geogrid reinforced pile supported embankment[J]. China Civil Engineering Journal, 2015, 48(S2): 241-245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2015S2044.htm
    [34]
    万志辉, 戴国亮, 龚维明, 等. 基于自平衡法后压浆灌注桩荷载传递函数的变化分析[J]. 土木工程学报, 2017, 50(8): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201708011.htm

    WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, et al. Analysis on the load transfer function of post-grouting bored pile based on self-balanced method[J]. China Civil Engineering Journal, 2017, 50(8): 98-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201708011.htm
    [35]
    万志辉, 戴国亮, 龚维明. 超厚细砂地层大直径后压浆桩荷载传递计算与分析[J]. 岩土力学, 2018, 39(4): 1386-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804031.htm

    WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming. Calculation and analysis of load transfer in large-diameter grouted pile in extra-thick fine sand layers[J]. Rock and Soil Mechanics, 2018, 39(4): 1386-1394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804031.htm
    [36]
    RUIZ M E, PANDO M A. Load transfer mechanisms of tip post-grouted drilled shafts in sand[C]//ASCE. Proceedings of International Foundation Congress and Equipment Expo. Reston: ASCE, 2009: 23-30.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (593) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return