Citation: | SHI Yu-ling, CHANG Zhou, AN Ning, YAN Chang-gen, LAN Heng-xing, YANG Wang-li. Long-term stability analysis of loess cutting shallow slope based on wet-dry cycle test[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 104-115. doi: 10.19818/j.cnki.1671-1637.2023.04.007 |
[1] |
GAO Guo-rui, HAN Ai-min. Distribution of regional soils in China and formation of their special geotechnical properties[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 511-515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200505005.htm
|
[2] |
XU Zhang-jian, LIN Zai-guan, ZHANG Mao-sheng. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1297-1312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200707001.htm
|
[3] |
LAN Heng-xing, PENG Jian-bing, ZHU Yan-bo, et al. Research on geological and surfacial processes and major disaster effects in the Yellow River Basin[J]. Science China Earth Sciences, 2022, 65(2): 234-256. doi: 10.1007/s11430-021-9830-8
|
[4] |
LIU Yang, HAN Dong-dong, LIU Ni-na, et al. Reinforcement mechanism analysis of lattice beam and prestressed anchor rod system for loess slope[J]. Frontiers in Earth Science, 2023(11): 1121172.
|
[5] |
ZHOU Zhi, ZHANG Jia-ming, NING Fu-long, et al. Temporal and spatial characteristics of moisture migration and instability mechanism of cracked soil slope under rainfall infiltration[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 107-119. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.008
|
[6] |
YANG He-ping, WANG Xing-zheng, XIAO Jie. Influence of wetting-drying cycles on strength characteristics of Nanning expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 949-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405027.htm
|
[7] |
JING Jing, HOU Jing-ming, SUN Wen, et al. Study on influencing factors of unsaturated loess slope stability under dry-wet cycle conditions[J]. Journal of Hydrology, 2022, 612: 128187. doi: 10.1016/j.jhydrol.2022.128187
|
[8] |
CHEN Zheng-han, FANG Xiang-wei, ZHU Yuan-qing, et al. Research on meso-structures and their evolution laws of expansive soil and loess[J]. Rock and Soil Mechanics, 2009, 30(1): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901003.htm
|
[9] |
NI Wan-kui, YUAN Kang-ze, LYU Xiang-fei, et al. Comparison and quantitative analysis of microstructure parameters between original loess and remoulded loess under different wetting-drying cycles[J]. Scientific Reports, 2020, 10: 5547. doi: 10.1038/s41598-020-62571-1
|
[10] |
LU Hai-jun, LI Ji-xiang, WANG Wei-wei, et al. Cracking and water seepage of Xiashu loess used as landfill cover under wetting-drying cycles[J]. Environmental Earth Sciences, 2015, 74(11): 7441-7450. doi: 10.1007/s12665-015-4729-4
|
[11] |
YE Wan-jun, BAI Yang, CUI Chen-yang, et al. Deterioration of the internal structure of loess under dry-wet cycles[J]. Advances in Civil Engineering, 2020, 2020: 1-17.
|
[12] |
YE Wan-jun, LI Chang-qing, YANG Geng-she, et al. Evolution of loess crack under action of dehumidification-humidification[J]. Journal of Engineering Geology, 2017, 25(2): 376-383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702015.htm
|
[13] |
LIU Hong-tai, ZHANG Ai-jun, DUAN Tao, et al. The influence of alternate dry-wet on the strength and permeability of remolded loess[J]. Hydro-Science and Engineering, 2010(4): 38-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201004007.htm
|
[14] |
HAO Rui-hua, ZHANG Zi-zhao, GUO Ze-zhou, et al. Investigation of changes to triaxial shear strength parameters and microstructure of Yili loess with drying-wetting cycles[J]. Materials, 2021, 15(1): 255. doi: 10.3390/ma15010255
|
[15] |
YUAN Zhi-hui, NI Wan-kui, TANG Chun, et al. Experimental study of structure strength and strength attenuation of loess under wetting-drying cycle[J]. Rock and Soil Mechanics, 2017, 38(7): 1894-1902, 1942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707007.htm
|
[16] |
YUAN Zhi-hui, NI Wan-kui, TANG Chun, et al. Experimental studies of tensile strength of loess in drying-wetting cycle[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3670-3677. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1062.htm
|
[17] |
YUAN Kang-ze, NI Wan-kui, LYU Xiang-fei. Collapse behavior and microstructural change of loess under different wetting-drying cycles[J]. IOP Conference Series Earth and Environmental Science, 2020, 598: 012036.
|
[18] |
YE Wan-jun, ZHAO Zhi-peng, YANG Geng-she, et al. Influence of soil moisture state on loess slope spalling hazards[J]. China Journal of Highway and Transport, 2015, 28(7): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201507003.htm
|
[19] |
ZENG Zhao-tian, LYU Hai-bo, ZHAO Yan-lin, et al. Wetting-drying effect of expansive soils and its influence on slope stability[J]. Journal of Engineering Geology, 2012, 20(6): 934-939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201206006.htm
|
[20] |
LIAN Bao-qin, WANG Xin-gang, ZHAN Hong-bin, et al. Creep mechanical and microstructural insights into the failure mechanism of loess landslides induced by dry-wet cycles in the Heifangtai platform, China[J]. Engineering Geology, 2022, 300: 106589.
|
[21] |
LI Guo-yu, WANG Fei, MA Wei, et al. Variations in strength and deformation of compacted loess exposed to wetting-drying and freeze-thaw cycles[J]. Cold Regions Science and Technology, 2018, 151: 159-167.
|
[22] |
DU Jing-fang, TONG Fei. Study on the influence of wet-dry cycle and rainfall on loess slope stability[J]. Journal of Guangxi University (Natural Science Edition), 2020, 45(4): 783-791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202004008.htm
|
[23] |
MU Q Y, DONG H, LIAO H J, et al. Water-retention curves of loess under wetting-drying cycles[J]. Géotechnique Letters, 2020, 10(2): 135-140.
|
[24] |
ZHAO Tian-yu, WANG Jin-fang. Soil-water characteristic curve for unsaturated loess soil considering density and wetting-drying cycle effects[J]. Journal of Central South University(Science and Technology), 2012, 43(6): 2445-2453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201206062.htm
|
[25] |
LIU Feng-yin, ZHANG Zhao, ZHOU Dong, et al. Effects of initial density and drying-wetting cycle on soil water characteristic curve of unsaturated loess[J]. Rock and Soil Mechanics, 2011, 32(S2): 132-136, 142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2021.htm
|
[26] |
HAO Yan-zhou, WANG Tie-hang, WANG Zhao, et al. Experimental study on triaxial shear characteristics of compacted loess under drying and wetting cycles[J]. Journal of Hydraulic Engineering, 2021, 52(3): 359-368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202103012.htm
|
[27] |
WANG Tie-hang, HAO Yan-zhou, WANG Zhao, et al. Experimental study on dynamic strength properties of compacted loess under wetting-drying cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1242-1251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006014.htm
|
[28] |
HU Chang-ming, YUAN Yi-li, MEI Yuan, et al. Comprehensive strength deterioration model of compacted loess exposed to drying-wetting cycles[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(1): 383-398.
|
[29] |
DANG Jin-qian, HAO Yue-qing. Effect of water content on the structure strength of loess[J]. Water Resources and Water Engineering, 1998(2): 15-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ802.002.htm
|
[30] |
TANG Chao-sheng, SHI Bin, LIU Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38 (10): 1186-1193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200710007.htm
|
[31] |
SUN Wei-feng. Study of instability mechanism and intelligent pre-warning for cutting slope with soil-rock binary structure[D]. Xi'an: Chang'an University, 2020. (in Chinese)
|