Citation: | HU Zuo-an, DENG Jin-cheng, HAN Jin-li, YUAN Kai. Review on application of graph neural network in traffic prediction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 39-61. doi: 10.19818/j.cnki.1671-1637.2023.05.003 |
[1] |
刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3): 82-85. doi: 10.3969/j.issn.1002-0268.2004.03.022
LIU Jing, GUAN Wei. A summary of traffic flow forecasting methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21(3): 82-85. (in Chinese) doi: 10.3969/j.issn.1002-0268.2004.03.022
|
[2] |
VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short-term traffic forecasting: where we are and where we're going[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 3-19. doi: 10.1016/j.trc.2014.01.005
|
[3] |
LANA I, DEL SER J, VELEZ M, et al. Road traffic forecasting: recent advances and new challenges[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 10(2): 93-109. doi: 10.1109/MITS.2018.2806634
|
[4] |
YIN Xue-yan, WU Gen-ze, WEI Jin-ze, et al. Deep learning on traffic prediction: methods, analysis and future directions[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 4927-4943. doi: 10.1109/TITS.2021.3054840
|
[5] |
LI Fu-xian, FENG Jie, YAN Huan, et al. Dynamic graph convolutional recurrent network for traffic prediction: benchmark and solution[J]. ArXiv Preprint, 2021, DOI:
|
[6] |
YE Jie-xia, ZHAO Juan-juan, YE Ke-jiang, et al. How to build a graph-based deep learning architecture in traffic domain: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(5): 3904-3924. doi: 10.1109/TITS.2020.3043250
|
[7] |
BUI K H N, CHO J, YI H. Spatial-temporal graph neural network for traffic forecasting: an overview and open research issues[J]. Applied Intelligence, 2022, 52(3): 2763-2774. doi: 10.1007/s10489-021-02587-w
|
[8] |
JIANG Wei-wei, LUO Jia-yun. Graph neural network for traffic forecasting: a survey[J]. Expert Systems with Applications, 2022, 207: 117921. doi: 10.1016/j.eswa.2022.117921
|
[9] |
DHAMANIYA A, CHANDRA S. Speed prediction models for urban arterials under mixed traffic conditions[J]. Procedia—Social and Behavioral Sciences, 2013, 104: 342-351. doi: 10.1016/j.sbspro.2013.11.127
|
[10] |
LARTEY J D. Predicting traffic congestion: a queuing perspective[J]. Open Journal of Modelling and Simulation, 2014, 2(2): 57-66. doi: 10.4236/ojmsi.2014.22008
|
[11] |
LI Xiao-peng, WANG Xin, OUYANG Yan-feng. Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws[J]. Transportation Research Part B: Methodological, 2012, 46(3): 409-423. doi: 10.1016/j.trb.2011.11.003
|
[12] |
KANOH H, FURUKAWA T, TSUKAHARA S, et al. Short-term traffic prediction using fuzzy c-means and cellular automata in a wide-area road network[C]//IEEE. Proceedings of 2005 IEEE Intelligent Transportation Systems. New York: IEEE, 2005: 381-385.
|
[13] |
SKABARDONIS A, GEROLIMINIS N. Real-time estimation of travel times on signalized arterials[M]//Elsevier. Transportation and Traffic Theory. Amsterdam: Elsevier, 2005: 387-406.
|
[14] |
OH S, BYON Y J, JANG K, et al. Short-term travel-time prediction on highway: a review on model-based approach[J]. KSCE Journal of Civil Engineering, 2018, 22(1): 298-310. doi: 10.1007/s12205-017-0535-8
|
[15] |
TANG Li-yang, ZHAO Yang, CABRERA J, et al. Forecasting short-term passenger flow: an empirical study on Shenzhen metro[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3613-3622. doi: 10.1109/TITS.2018.2879497
|
[16] |
HAMED M M, AL-MASAEID H R, SAID Z M B. Short-term prediction of traffic volume in urban arterials[J]. Journal of Transportation Engineering, 1995, 121(3): 249-254. doi: 10.1061/(ASCE)0733-947X(1995)121:3(249)
|
[17] |
OKUTANI I, STEPHANEDES Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18(1): 1-11. doi: 10.1016/0191-2615(84)90002-X
|
[18] |
MCFADDEN J, YANG W T, DURRANS S R. Application of artificial neural networks to predict speeds on two-lane rural highways[J]. Transportation Research Record, 2001, 1751(1): 9-17. doi: 10.3141/1751-02
|
[19] |
LING Xian-yao, FENG Xin-xin, CHEN Zhong-hui, et al. Short-term traffic flow prediction with optimized multi-kernel support vector machine[C]//IEEE. 2017 IEEE Congress on Evolutionary Computation (CEC). New York: IEEE, 2017: 294-300.
|
[20] |
张晓利, 贺国光, 陆化普. 基于K-邻域非参数回归短时交通流预测方法[J]. 系统工程学报, 2009, 24(2): 178-183. https://www.cnki.com.cn/Article/CJFDTOTAL-XTGC200902009.htm
ZHANG Xiao-li, HE Guo-guang, LU Hua-pu. Short-term traffic flow forecasting based on K-nearest neighbors non-parametric regression[J]. Journal of Systems Engineering, 2009, 24(2): 178-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTGC200902009.htm
|
[21] |
VANAJAKSHI L, RILETT L R. A comparison of the performance of artificial neural networks and support vector machines for the prediction of traffic speed[C]//IEEE. IEEE Intelligent Vehicles Symposium, 2004. New York: IEEE, 2004: 194-199.
|
[22] |
TAN Hua-chun, XUAN Xuan, WU Yuan-kai, et al. A comparison of traffic flow prediction methods based on DBN[C]// ASCE. 16th COTA International Conference of Transportation Professionals. Reston: ASCE, 2016: 273-283.
|
[23] |
NGUYEN T, NGUYEN G, NGUYEN B M. EO-CNN: an enhanced CNN model trained by equilibrium optimization for traffic transportation prediction[J]. Procedia Computer Science, 2020, 176: 800-809. doi: 10.1016/j.procs.2020.09.075
|
[24] |
MA Xiao-lei, TAO Zhi-min, WANG Yin-hai, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. doi: 10.1016/j.trc.2015.03.014
|
[25] |
SHAO Hong-xin, SOONG B H. Traffic flow prediction with long short-term memory networks (LSTMs)[C]//IEEE. 2016 IEEE Region 10 Conference (TENCON). New York: IEEE, 2016: 2986-2989.
|
[26] |
DU Sheng-dong, LI Tian-rui, GONG Xun, et al. Traffic flow forecasting based on hybrid deep learning framework[C]// IEEE. 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE). New York: IEEE, 2017: 17505846.
|
[27] |
ZHANG Jun-bo, ZHENG Yu, QI De-kang. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//ACM. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. New York: ACM, 2017: 1655-1661.
|
[28] |
YANG Dan, CHEN Kai-rui, YANG Meng-ning, et al. Urban rail transit passenger flow forecast based on LSTM with enhanced long-term features[J]. IET Intelligent Transport Systems, 2019, 13(10): 1475-1482. doi: 10.1049/iet-its.2018.5511
|
[29] |
CAO Miao-miao, LI V O K, CHAN V W S. A CNN-LSTM model for traffic speed prediction[C]//IEEE. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). New York: IEEE, 2020: 1-5.
|
[30] |
ZOU Zhe-ne, PENG Hao, LIU Lin, et al. Deep convolutional mesh RNN for urban traffic passenger flows prediction[C]// IEEE. 2018 IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). New York: IEEE, 2018: 1305-1310.
|
[31] |
SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. doi: 10.1109/TNN.2008.2005605
|
[32] |
ZHANG Tian-pu, DING Wei-long, CHEN Tao, et al. A graph convolutional method for traffic flow prediction in highway network[J]. Wireless Communications and Mobile Computing, 2021, 2021: 1997212.
|
[33] |
HAN Yong, PENG Tong-xin, WANG Cheng, et al. A hybrid GLM model for predicting citywide spatio-temporal metro passenger flow[J]. ISPRS International Journal of Geo-Information, 2021, 10(4): 222. doi: 10.3390/ijgi10040222
|
[34] |
FENG Si-yuan, KE Jin-tao, YANG Hai, et al. A multi-task matrix factorized graph neural network for co-prediction of zone-based and OD-based ride-hailing demand[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5704-5716. doi: 10.1109/TITS.2021.3056415
|
[35] |
SONG Chao, LIN You-fang, GUO Sheng-nan, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921. doi: 10.1609/aaai.v34i01.5438
|
[36] |
MA Xiao-lei, DAI Zhuang, HE Zheng-bing, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818. doi: 10.3390/s17040818
|
[37] |
XUE Gang, LIU Shi-feng, REN Long, et al. Forecasting the subway passenger flow under event occurrences with multivariate disturbances[J]. Expert Systems with Applications, 2022, 188: 116057. doi: 10.1016/j.eswa.2021.116057
|
[38] |
GUO Kan, HU Yong-li, QIAN Zhen, et al. Optimized graph convolution recurrent neural network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(2): 1138-1149. doi: 10.1109/TITS.2019.2963722
|
[39] |
GUO Sheng-nan, LIN You-fang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929. doi: 10.1609/aaai.v33i01.3301922
|
[40] |
GENG Xu, LI Ya-guang, WANG Le-ye, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[C]//ACM. Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence. New York: ACM, 2019: 3656-3663.
|
[41] |
GAO A, ZHENG Lin-jiang, WANG Zi-xu, et al. Attention based short-term metro passenger flow prediction[C]//Springer. International Conference on Knowledge Science, Engineering and Management. Berlin: Springer, 2021: 598-609.
|
[42] |
闫旭, 范晓亮, 郑传潘, 等. 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报(工学版), 2020, 54(6): 1147-1155.
YAN Xu, FAN Xiao-liang, ZHENG Chuan-pan, et al. Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(6): 1147-1155. (in Chinese)
|
[43] |
曾筠程, 邵敏华, 孙立军, 等. 基于有向图卷积神经网络的交通预测与拥堵管控[J]. 中国公路学报, 2021, 34(12): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112018.htm
ZENG Yun-cheng, SHAO Min-hua, SUN Li-jun, et al. Traffic prediction and congestion control based on directed graph convolution convolutional neural network[J]. China Journal of Highway and Transport, 2021, 34(12): 239-248. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112018.htm
|
[44] |
LEE K, RHEE W. DDP-GCN: multi-graph convolutional network for spatiotemporal traffic forecasting[J]. Transportation Research Part C: Emerging Technologies, 2022, 134: 103466. doi: 10.1016/j.trc.2021.103466
|
[45] |
ZHAO Ling, SONG Yu-jiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. doi: 10.1109/TITS.2019.2935152
|
[46] |
YU Bing, YIN Hao-teng, ZHU Zhan-xing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//ACM. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. New York: ACM, 2018: 3634-3640.
|
[47] |
LI Ya-guang, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[J]. ArXiv Preprint, 2018, DOI:
|
[48] |
XU Ming-xing, DAI Wen-rui, LIU Chun-miao, et al. Spatial-temporal transformer networks for traffic flow forecasting[J]. ArXiv Preprint, 2018, DOI:
|
[49] |
LYU Ming-qi, HONG Zhao-xiong, CHEN Ling, et al. Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3337-3348. doi: 10.1109/TITS.2020.2983763
|
[50] |
XIA Tong, LIN Jun-jie, LI Yong, et al. 3DGCN: 3-dimensional dynamic graph convolutional network for citywide crowd flow prediction[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(6): 1-21.
|
[51] |
BAI Lei, YAO Li-na, KANHERE S S, et al. STG2Seq: spatial-temporal graph to sequence model for multi-step passenger demand forecasting[C]//International Joint Conferences on Artificial Intelligence Organization. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 1981-1987.
|
[52] |
YAO Hua-xiu, WU Fei, KE Jin-tao, et al. Deep multi-view spatial-temporal network for taxi demand prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 2588-2595.
|
[53] |
YU Bing, LI Meng-zhang, ZHANG Ji-yong, et al. 3D graph convolutional networks with temporal graphs: a spatial information free framework for traffic forecasting[J]. ArXiv Preprint, 2019, DOI:
|
[54] |
BAI Lei, YAO Li-na, LI Can, et al. Adaptive graph convolutional recurrent network for traffic forecasting[J]. Advances in Neural Information Processing Systems, 2020, 33: 17804-17815.
|
[55] |
HAN Liang-zhe, DU Bo-wen, SUN Lei-lei, et al. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting[C]//ACM. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 547-555.
|
[56] |
ROY A, ROY K K, ALI A A, et al. Unified spatio-temporal modeling for traffic forecasting using graph neural network[C]//IEEE. 2021 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2021: 1-8.
|
[57] |
WANG Xiao-yang, MA Yao, WANG Yi-qi, et al. Traffic flow prediction via spatial temporal graph neural network[C]// ACM. Proceedings of the Web Conference 2020. New York: ACM, 2020: 1082-1092.
|
[58] |
YU J J Q, GU Jia-tao. Real-time traffic speed estimation with graph convolutional generative autoencoder[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3940-3951. doi: 10.1109/TITS.2019.2910560
|
[59] |
ZHANG Qi, JIN Qi-zhao, CHANG Jian-long, et al. Kernel-weighted graph convolutional network: a deep learning approach for traffic forecasting[C]//IEEE. 2018 24th International Conference on Pattern Recognition (ICPR). New York: IEEE, 2018: 1018-1023.
|
[60] |
WANG Qiang, XU Chen, ZHANG Wen-qi, et al. GraphTTE: travel time estimation based on attention-spatiotemporal graphs[J]. IEEE Signal Processing Letters, 2021, 28: 239-243. doi: 10.1109/LSP.2020.3048849
|
[61] |
ZHU Jia-wei, WANG Qiong-jie, TAO Chao, et al. AST-GCN: attribute-augmented spatiotemporal graph convolutional network for traffic forecasting[J]. IEEE Access, 2021, 9: 35973-35983. doi: 10.1109/ACCESS.2021.3062114
|
[62] |
WANG Yuan-dong, YIN Hong-zhi, CHEN Hong-xu, et al. Origin-destination matrix prediction via graph convolution: a new perspective of passenger demand modeling[C]//ACM. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1227-1235.
|
[63] |
BAI Lei, YAO Li-na, WANG Xian-zhi, et al. Deep spatial-temporal sequence modeling for multi-step passenger demand prediction[J]. Future Generation Computer Systems, 2021, 121: 25-34. doi: 10.1016/j.future.2021.03.003
|
[64] |
WANG Jing-cheng, ZHANG Yong, WEI Yu, et al. Metro passenger flow prediction via dynamic hypergraph convolution networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7891-7903. doi: 10.1109/TITS.2021.3072743
|
[65] |
CHEN Wei, LI Zong-ping, LIU Can, et al. A deep learning model with conv-LSTM networks for subway passenger congestion delay prediction[J]. Journal of Advanced Transportation, 2021, 2021: 1-10.
|
[66] |
LIU Ling-bo, CHEN Jing-wen, WU He-feng, et al. Physical-virtual collaboration modeling for intra- and inter-station metro ridership prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(4): 3377-3391.
|
[67] |
ESSIEN A, PETROUNIAS I, SAMPAIO P, et al. A deep-learning model for urban traffic flow prediction with traffic events mined from twitter[J]. World Wide Web, 2021, 24(4): 1345-1368. doi: 10.1007/s11280-020-00800-3
|
[68] |
SHI Liu-shuai, WANG Le, LONG Cheng-jiang, et al. SGCN: sparse graph convolution network for pedestrian trajectory prediction[C]//IEEE. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2021: 8990-8999.
|
[69] |
ZHANG Jun-bo, ZHENG Yu, SUN Jun-kai, et al. Flow prediction in spatio-temporal networks based on multitask deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(3): 468-478. doi: 10.1109/TKDE.2019.2891537
|
[70] |
李松江, 祝绍凇, 杨华民, 等. 基于时空相关性多任务神经网络的交通预测[J]. 计算机应用与软件, 2021, 38(9): 286-292. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202109047.htm
LI Song-jiang, ZHU Shao-song, YANG Hua-min, et al. Traffic prediction based on spatiotemporal correlation multitask neural network[J]. Computer Applications and Software, 2021, 38(9): 286-292. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ202109047.htm
|
[71] |
YIN Xue-yan, WU Gen-ze, WEI Jin-ze, et al. Multi-stage attention spatial-temporal graph networks for traffic prediction[J]. Neurocomputing, 2021, 428: 42-53. doi: 10.1016/j.neucom.2020.11.038
|
[72] |
CAI Ling, JANOWICZ K, MAI Geng-chen, et al. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting[J]. Transactions in GIS, 2020, 24(3): 736-755. doi: 10.1111/tgis.12644
|
[73] |
FANG Shen, ZHANG Qi, MENG Gao-feng, et al. GSTNet: global spatial-temporal network for traffic flow prediction[C]//International Joint Conferences on Artificial Intelligence Organization. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 2286-2293.
|
[74] |
YU B, LEE Y, SOHN K. Forecasting road traffic speeds by considering area-wide spatio-temporal dependencies based on a graph convolutional neural network (GCN)[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 189-204. doi: 10.1016/j.trc.2020.02.013
|
[75] |
WRIGHT M A, EHLERS S F G, HOROWITZ R. Neural-attention-based deep learning architectures for modeling traffic dynamics on lane graphs[C]//IEEE. 2019 IEEE Intelligent Transportation Systems Conference (ITSC). New York: IEEE, 2019: 3898-3905.
|
[76] |
CHAI Di, WANG Le-ye, YANG Qiang. Bike flow prediction with multi-graph convolutional networks[C]//ACM. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2018: 397-400.
|
[77] |
KE Jin-tao, QIN Xiao-ran, YANG Hai, et al. Predicting origin-destination ride-sourcing demand with a spatio-temporal encoder-decoder residual multi-graph convolutional network[J]. Transportation Research Part C: Emerging Technologies, 2021, 122: 102858. doi: 10.1016/j.trc.2020.102858
|
[78] |
MOHANTY S, POZDNUKHOV A, CASSIDY M. Region-wide congestion prediction and control using deep learning[J]. Transportation Research Part C: Emerging Technologies, 2020, 116: 102624. doi: 10.1016/j.trc.2020.102624
|
[79] |
SUN Ya-sheng, HE Tao, HU Jie, et al. Socially-aware graph convolutional network for human trajectory prediction[C]// IEEE. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). New York: IEEE, 2019: 325-333.
|
[80] |
JEON H, CHOI J, KUM D. SCALE-net: scalable vehicle trajectory prediction network under random number of interacting vehicles via edge-enhanced graph convolutional neural network[C]//IEEE. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York: IEEE, 2020: 2095-2102.
|
[81] |
WU Zong-han, PAN Shi-rui, CHEN Feng-wen, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. doi: 10.1109/TNNLS.2020.2978386
|
[82] |
ZHOU Jie, CUI Gang-qu, HU Sheng-ding, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81. doi: 10.1016/j.aiopen.2021.01.001
|
[83] |
ZHANG Zi-wei, CUI Peng, ZHU Wen-wu. Deep learning on graphs: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 249-270. doi: 10.1109/TKDE.2020.2981333
|
[84] |
GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[J]. ArXiv Preprint, 2017, DOI:
|
[85] |
WEI Long, YU Zheng-xu, JIN Zhong-ming, et al. Dual graph for traffic forecasting[J]. IEEE Access, 2019(99): 1.
|
[86] |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//ACM. Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 1025-1035.
|
[87] |
ATWOOD J, TOWSLEY D. Diffusion-convolutional neural networks[C]//NIPS. Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2016: 2001-2009.
|
[88] |
HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 129-150. doi: 10.1016/j.acha.2010.04.005
|
[89] |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral riltering[C]//NIPS. Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: Curran Associates Inc., 2016: 3844-3852.
|
[90] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. ArXiv Preprint, 2017, DOI:
|
[91] |
VELI AČG KOVI AC'G P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. ArXiv Preprint, 2017, DOI:
|
[92] |
ZHANG Jia-ni, SHI Xing-jia, XIE Jun-yuan, et al. GaAN: gated attention networks for learning on large and spatiotemporal graphs[J]. ArXiv Preprint, 2018, DOI:
|
[93] |
KIPF T N, WELLING M. Variational graph auto-encoders[J]. ArXiv Preprint, 2016, DOI:
|
[94] |
ZHAO Fei-fei, WANG Wei-ping, SUN Hui-jun, et al. Station-level short-term demand forecast of carsharing system via station-embedding-based hybrid neural network[J]. Transportmetrica B: Transport Dynamics, 2022, 10(1): 1-19. doi: 10.1080/21680566.2021.1951885
|
[95] |
ZHOU Fan, YANG Qing, ZHONG Ting, et al. Variational graph neural networks for road traffic prediction in intelligent transportation systems[J]. IEEE Transactions on Industrial Informatics, 2021, 17(4): 2802-2812. doi: 10.1109/TII.2020.3009280
|
[96] |
LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[J]. ArXiv Preprint, 2015, DOI:
|
[97] |
倪庆剑, 彭文强, 张志政, 等. 基于信息增强传输的时空图神经网络交通流预测[J]. 计算机研究与发展, 2022, 59(2): 282-293.
NI Qing-jian, PENG Wen-qiang, ZHANG Zhi-zheng, et al. Traffic flow prediction of spatiotemporal graph neural network based on information enhancement transmission[J]. Journal of Computer Research and Development, 2022, 59(2): 282-293. (in Chinese)
|
[98] |
ZHANG Shao-kun, GUO Yao, ZHAO Pei-ze, et al. A graph-based temporal attention framework for multi-sensor traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7743-7758. doi: 10.1109/TITS.2021.3072118
|
[99] |
GUO Kan, HU Yong-li, SUN Yan-fei, et al. Hierarchical graph convolution networks for traffic forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(1): 151-159. doi: 10.1609/aaai.v35i1.16088
|
[100] |
LI Guo-peng, KNOOP V L, VAN LINT H. Multistep traffic forecasting by dynamic graph convolution: interpretations of real-time spatial correlations[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103185. doi: 10.1016/j.trc.2021.103185
|
[101] |
TIAN Chen-yu, CHAN W K. Spatial-temporal attention wavenet: a deep learning framework for traffic prediction considering spatial-temporal dependencies[J]. IET Intelligent Transport Systems, 2021, 15(4): 549-561. doi: 10.1049/itr2.12044
|
[102] |
PARK C, LEE C, BAHNG H, et al. ST-GRAT: a novel spatio-temporal graph attention networks for accurately forecasting dynamically changing road speed[C]//ACM. Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1215-1224.
|
[103] |
GENG Xu, LI Ya-guang, WANG Le-ye, et al. Spatiotemporal multi-graph convolution network for ride-hailing demand forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3656-3663. doi: 10.1609/aaai.v33i01.33013656
|
[104] |
YE Jun-cheng, SUN Lei-lei, DU Bo-wen, et al. Coupled layer-wise graph convolution for transportation demand prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4617-4625. doi: 10.1609/aaai.v35i5.16591
|
[105] |
ZI Wen-jie, XIONG Wei, CHEN Hao, et al. TAGCN: station-level demand prediction for bike-sharing system via a temporal attention graph convolution network[J]. Information Sciences, 2021, 561: 274-285. doi: 10.1016/j.ins.2021.01.065
|
[106] |
WANG Xi, CHAI Yi-bo, LI Hui, et al. Graph convolutional network-based model for incident-related congestion prediction: a case study of Shanghai Expressways[J]. ACM Transactions on Management Information Systems, 2021, 12(3): 1-22.
|
[107] |
ZHANG Jin-lei, CHEN Feng, CUI Zhi-yong, et al. Deep learning architecture for short-term passenger flow forecasting in urban rail transit[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 7004-7014. doi: 10.1109/TITS.2020.3000761
|
[108] |
HUA Xin, LIU Wei. Spatial-temporal network data-driven multi-layer traffic knowledge graph reconstruction for dynamic prediction[C]//IEEE. 2022 4th International Conference on Robotics and Computer Vision (ICRCV). New York: IEEE, 2022: 20-24.
|
[109] |
ZHU Jia-wei, HAN Xing, DENG Han-han, et al. KST-GCN: a knowledge-driven spatial-temporal graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15055-15065. doi: 10.1109/TITS.2021.3136287
|
[110] |
ZHONG Ting, XU Zhe-yang, ZHOU Fan. Probabilistic graph neural networks for traffic signal control[C]//IEEE. ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New York: IEEE, 2021: 4085-4089.
|
[111] |
ZHANG Heng-yuan, ZHAO Su-yao, LIU Rui-heng, et al. Automatic traffic anomaly detection on the road network with spatial-temporal graph neural network representation learning[J]. Wireless Communications and Mobile Computing, 2022, 2022: 4222827.
|
[112] |
JIN Ke-fan, WANG Hong-ye, LIU Chang-xing, et al. Graph neural network based relation learning for abnormal perception information detection in self-driving scenarios[C]//IEEE. 2022 International Conference on Robotics and Automation (ICRA). New York: IEEE, 2022: 8943-8949.
|
[113] |
LIANG Yue-bing, HUANG Guan, ZHAO Zhan. Joint demand prediction for multimodal systems: a multi-task multi-relational spatiotemporal graph neural network approach[J]. Transportation Research Part C: Emerging Technologies, 2022, 140: 103731. doi: 10.1016/j.trc.2022.103731
|
[114] |
TYGESEN M N, PEREIRA F C, RODRIGUES F. Unboxing the graph: towards interpretable graph neural networks for transport prediction through neural relational inference[J]. Transportation Research Part C: Emerging Technologies, 2023, 146: 103946. doi: 10.1016/j.trc.2022.103946
|
[115] |
YUAN Hao, YU Hai-yang, GUI Shu-rui, et al. Explainability in graph neural networks: a taxonomic survey[J]. ArXiv Preprint, 2020, DOI:
|
[116] |
ZHANG Yuan, CHENG Qi-xiu, LIU Yang, et al. Full-scale spatio-temporal traffic flow estimation for city-wide networks: a transfer learning based approach[J]. Transportmetrica B: Transport Dynamics, 2022, 11(1): 869-895.
|
[117] |
HOQUE J M, ERHARDT G D, SCHMITT D, et al. Estimating the uncertainty of traffic forecasts from their historical accuracy[J]. Transportation Research Part A: Policy and Practice, 2021, 147: 339-349. doi: 10.1016/j.tra.2021.03.015
|
[118] |
GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning[C]//ACM. International Conference on Machine Learning. New York: ACM, 2016: 1050-1059.
|
[119] |
LI Ming-xi, TANG Yi-hong, MA Wei. Few-sample traffic prediction with graph networks using locale as relational inductive biases[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(2): 1894-1908.
|
[120] |
QI Yu-xin, WU Jun, BASHIR A K, et al. Privacy-preserving cross-area traffic forecasting in ITS: a transferable spatial-temporal graph neural network approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 1-14. doi: 10.1109/TITS.2022.3201451
|