Citation: | ZHENG Jian-feng, ZHAO Yu-xing, LIU Xin-tong, GUO Ni-nan. Optimal configuration and allocation of berth resources in multi-port regions[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 183-191. doi: 10.19818/j.cnki.1671-1637.2023.05.012 |
[1] |
GUI Dong-ping, WANG Hai-yan, YU Meng. Risk assessment of port congestion risk during the COVID-19 pandemic[J]. Journal of Marine Science and Engineering, 2022, 10(2): 150. doi: 10.3390/jmse10020150
|
[2] |
王伟, 纪翌佳, 金凤君. 基于动态空间面板模型的中国港口竞争与合作关系研究[J]. 地理研究, 2022, 41(3): 616-632. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202203002.htm
WANG Wei, JI Yi-jia, JIN Feng-jun. The competition and cooperation relationship of Chinese Ports based on dynamic spatial panel model[J]. Geographical Research, 2022, 41(3): 616-632. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ202203002.htm
|
[3] |
范志强. 连续泊位分配问题研究: 模型优化与计算分析[J]. 工业工程与管理, 2016, 21(3): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201603011.htm
FAN Zhi-qiang. Research on continuous berth allocation problem: model comparison and computational analysis[J]. Industrial Engineering and Management, 2016, 21(3): 81-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201603011.htm
|
[4] |
BARBOSA F, BERBERT RAMPAZZO P C, YAMAKAMI A, et al. The use of frontier techniques to identify efficient solutions for the berth allocation problem solved with a hybrid evolutionary algorithm[J]. Computers and Operations Research, 2019, 107: 43-60. doi: 10.1016/j.cor.2019.01.017
|
[5] |
URSAVAS E, ZHU S X. Optimal policies for the berth allocation problem under stochastic nature[J]. European Journal of Operational Research, 2016, 255(2): 380-387. doi: 10.1016/j.ejor.2016.04.029
|
[6] |
LALLA-RUIZ E, EXPÓSITO-IZQUIERDO C, MELIÁN-BATISTA B, et al. A set-partitioning-based model for the berth allocation problem under time-dependent limitations[J]. European Journal of Operational Research, 2016, 250(3): 1001-1012. doi: 10.1016/j.ejor.2015.10.021
|
[7] |
XIANG Xi, LIU Chang-chun, MIAO Li-xin. A bi-objective robust model for berth allocation scheduling under uncertainty[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 106: 294-319. doi: 10.1016/j.tre.2017.07.006
|
[8] |
XU Ya, CHEN Qiu-shuang, QUAN Xiong-wen. Robust berth scheduling with uncertain vessel delay and handling time[J]. Annals of Operations Research, 2012, 192(1): 123-140. doi: 10.1007/s10479-010-0820-0
|
[9] |
SCHEPLER X, BALEV S, MICHEL S, et al. Global planning in a multi-terminal and multi-modal maritime container port[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 100: 38-62. doi: 10.1016/j.tre.2016.12.002
|
[10] |
IMAI A, NISHIMURA E, PAPADIMITRIOU S. The dynamic berth allocation problem for a container port[J]. Transportation Research Part B: Methodological, 2001, 35(4): 401-417. doi: 10.1016/S0191-2615(99)00057-0
|
[11] |
CORRECHER J F, ALVAREZ-VALDES R, TAMARIT J M. New exact methods for the time-invariant berth allocation and quay crane assignment problem[J]. European Journal of Operational Research, 2019, 275(1): 80-92. doi: 10.1016/j.ejor.2018.11.007
|
[12] |
ZHENG Jian-feng, YANG Ling-xiao, HAN Wen-cheng, et al. Berth assignment for liner carrier clusters under a cooperative environment[J]. Computers and Operations Research, 2021, 136: 105486. doi: 10.1016/j.cor.2021.105486
|
[13] |
ILATI G, SHEIKHOLESLAMI A, HASSANNAYEBI E. A simulation-based optimization approach for integrated port resource allocation problem[J]. PROMET—Traffic and Transportation, 2014, 26(3): 243-255. doi: 10.7307/ptt.v26i3.1337
|
[14] |
LEGATO P, MAZZA R M, GULLÌ D. Integrating tactical and operational berth allocation decisions via simulation-optimization[J]. Computers and Industrial Engineering, 2014, 78: 84-94. doi: 10.1016/j.cie.2014.10.003
|
[15] |
SAEED N, LARSEN O. Application of queuing methodology to analyze congestion: a case study of the Manila International Container Terminal, Philippines[J]. Case Studies on Transport Policy, 2016, 4(2): 143-149. doi: 10.1016/j.cstp.2016.02.001
|
[16] |
EL-NAGGAR M. Application of queuing theory to the container terminal at Alexandria seaport[J]. Journal of Soil Science and Environmental Management, 2010, 1(4): 77-85.
|
[17] |
DRAGOVI AC'G B, PARK N K, RADMILOVI AC'G Z. Ship-berth link performance evaluation: simulation and analytical approaches[J]. Maritime Policy and Management, 2006, 33(3): 281-299. doi: 10.1080/03088830600783277
|
[18] |
KOZAN E. Analysis of the economic effects of alternative investment decisions for seaport systems[J]. Transportation Planning and Technology, 1994, 18(3): 239-248. doi: 10.1080/03081069408717546
|
[19] |
SEN P. Optimal priority assignment in queues: application to marine congestion problems[J]. Maritime Policy and Management, 1980, 7(3): 175-184. doi: 10.1080/03088838000000019
|
[20] |
EDMOND E D, MAGGS R P. How useful are queue models in port investment decisions for container berths?[J]. Journal of the Operational Research Society, 1978, 29(8): 741-750. doi: 10.1057/jors.1978.162
|
[21] |
张恒, 陈秋双. 考虑船舶废气排放的港口群协同泊位分配研究[J]. 交通运输系统工程与信息, 2014, 14(4): 99-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201404015.htm
ZHANG Heng, CHEN Qiu-shuang. Coordinated berth allocation for port group considering vessel emissions[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(4): 99-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201404015.htm
|
[22] |
徐亚, 杜玉泉, 龙磊. 支持多码头协调运作的泊位调度模型和算法[J]. 系统工程, 2015, 33(1): 128-138. https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201501019.htm
XU Ya, DU Yu-quan, LONG Lei. Berth scheduling model and algorithm for coordinated operation of multiple container terminals in a port[J]. Systems Engineering, 2015, 33(1): 128-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCXT201501019.htm
|
[23] |
VENTURINI G, IRIS Ç, KONTOVAS C A, et al. The multi- port berth allocation problem with speed optimization and emission considerations[J]. Transportation Research Part D: Transport and Environment, 2017, 54: 142-159. doi: 10.1016/j.trd.2017.05.002
|
[24] |
毕娅, 李文锋. 集装箱港口集群下多港口多泊位联合调度方法[J]. 计算机应用, 2012, 32(2): 448-451. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201202038.htm
BI Ya, LI Wen-feng. Multi-port and multi-berth integrated scheduling based on container port cluster[J]. Journal of Computer Applications, 2012, 32(2): 448-451. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201202038.htm
|
[25] |
GUO Li-ming, ZHENG Jian-feng, DU Hao-ming, et al. The berth assignment and allocation problem considering cooperative liner carriers[J]. Transportation Research Part E: Logistics and Transportation Review, 2022, 164: 102793. doi: 10.1016/j.tre.2022.102793
|
[26] |
梅益群, 韩晓龙. 考虑泊位偏好和岸桥移动的泊位岸桥联合调度[J]. 计算机工程与应用, 2022, 58(6): 241-249. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202206024.htm
MEI Yi-qun, HAN Xiao-long. Joint scheduling of berths and quay cranes considering berth preference and quay crane movement[J]. Computer Engineering and Applications, 2022, 58(6): 241-249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202206024.htm
|
[27] |
焦小刚, 郑斐峰, 徐寅峰, 等. 考虑泊位疏浚的连续型泊位和动态岸桥联合调度[J]. 运筹与管理, 2020, 29(2): 47-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL202002007.htm
JIAO Xiao-gang, ZHENG Fei-feng, XU Yin-feng, et al. Integrated continuous berth allocation and time-variant quay crane assignment under berth dredging in container terminal[J]. Operations Research and Management Science, 2020, 29(2): 47-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YCGL202002007.htm
|
[28] |
KIMURA T. Approximations for multi-server queues: system interpolations[J]. Queueing Systems, 1994, 17(3): 347-382.
|
[29] |
张一诺. 港口通用泊位最佳数量的计算方法[J]. 系统工程理论与实践, 1983(1): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL198301009.htm
ZHANG Yi-nuo. Calculation method of optimal number of port general berths[J]. System Engineering Theory and Practice, 1983(1): 35-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL198301009.htm
|