Citation: | YOU Lin-lin, HE Jun-shu, CHEN Kun-xu, HE Jia-qi, YUAN Shao-xin, ZHAO Juan-juan, CAI Ming. Federated heterogeneous model and algorithm for personal travel recommendation[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 253-263. doi: 10.19818/j.cnki.1671-1637.2023.05.018 |
[1] |
彭宏勤, 张国伍. 未来城市交通及其对未来城市发展影响[J]. 交通运输系统工程与信息, 2020, 20(1): 2-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001002.htm
PENG Hong-qin, ZHANG Guo-wu. Future urban traffic and its influence on cities development[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 2-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202001002.htm
|
[2] |
LIU Yang, LYU Cheng, LIU Zhi-yuan, et al. Exploring a large-scale multi-modal transportation recommendation system[J]. Transportation Research Part C: Emerging Technologies, 2021, 126: 103070. doi: 10.1016/j.trc.2021.103070
|
[3] |
DAS D, SAHOO L, DATTA S. A survey on recommendation system[J]. International Journal of Computer Applications, 2017, 160(7): 6-10. doi: 10.5120/ijca2017913081
|
[4] |
ZHANG Qian, LU Jie, JIN Yao-chu. Artificial intelligence in recommender systems[J]. Complex and Intelligent Systems, 2021, 7(1): 439-457. doi: 10.1007/s40747-020-00212-w
|
[5] |
CUI Ge, LUO Jun, WANG Xin. Personalized travel route recommendation using collaborative filtering based on GPS trajectories[J]. International Journal of Digital Earth, 2018, 11(3): 284-307. doi: 10.1080/17538947.2017.1326535
|
[6] |
WEN Y T, YEO J Y, PENG W C, et al. Efficient keyword-aware representative travel route recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(8): 1639-1652. doi: 10.1109/TKDE.2017.2690421
|
[7] |
孙全明, 常磊, 马铖, 等. 基于图嵌入和CaGBDT的多模态出行推荐[J]. 北京邮电大学学报, 2021, 44(5): 81-87, 106. https://www.cnki.com.cn/Article/CJFDTOTAL-BJYD202105013.htm
SUN Quan-ming, CHANG Lei, MA Cheng, et al. Multi-modal transportation recommendation based on graph embedding and CaGBDT[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(5): 81-87, 106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJYD202105013.htm
|
[8] |
杨敏, 李宏伟, 任怡凤, 等. 基于旅客异质性画像的公铁联程出行方案推荐方法[J]. 清华大学学报(自然科学版), 2022, 62(7): 1220-1227. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202207013.htm
YANG Min, LI Hong-wei, REN Yi-feng, et al. Road-rail intermodal travel recommendations based on a passenger heterogeneity profile[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(7): 1220-1227. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202207013.htm
|
[9] |
SONG Xiang, DANAF M, ATASOY B, et al. Personalized menu optimization with preference updater: a Boston case study[J]. Transportation Research Record, 2018, 2672(8): 599-607. doi: 10.1177/0361198118758674
|
[10] |
BALBONTIN C, HENSHER D A, COLLINS A T. How to better represent preferences in choice models: the contributions to preference heterogeneity attributable to the presence of process heterogeneity[J]. Transportation Research Part B: Methodological, 2019, 122: 218-248. doi: 10.1016/j.trb.2019.02.007
|
[11] |
GODDARD M. The EU general data protection regulation (GDPR): European regulation that has a global impact[J]. International Journal of Market Research, 2017, 59(6): 703-705. doi: 10.2501/IJMR-2017-050
|
[12] |
YANG Qiang, LIU Yang, CHEN Tian-jian, et al. Federated machine learning: concept and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2): 1-19.
|
[13] |
JIAN Wei-tao, CHEN Kun-xu, HE Jun-shu, et al. A federated personal mobility service in autonomous transportation systems[J]. Mathematics, 2023, 11(12): 2693. doi: 10.3390/math11122693
|
[14] |
LIU Sheng, CHEN Qi-yang, YOU Lin-lin. Fed2A: federated learning mechanism in asynchronous and adaptive modes[J]. Electronics, 2022, 11(9): 1393. doi: 10.3390/electronics11091393
|
[15] |
WANG Si-hua, CHEN Ming-zhe, YIN Chang-chuan, et al. Federated learning for task and resource allocation in wireless high-altitude balloon networks[J]. IEEE Internet of Things Journal, 2021, 8(24): 17460-17475. doi: 10.1109/JIOT.2021.3080078
|
[16] |
CHENG Ke-wei, FAN Tao, JIN Yi-lun, et al. Secureboost: a lossless federated learning framework[J]. IEEE Intelligent Systems, 2021, 36(6): 87-98. doi: 10.1109/MIS.2021.3082561
|
[17] |
ZHU Hang-yu, JIN Yao-chu. Multi-objective evolutionary federated learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(4): 1310-1322. doi: 10.1109/TNNLS.2019.2919699
|
[18] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]//SINGH A, ZHU J. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics. Brookline: Microtome Publishing, 2017: 1273-1282.
|
[19] |
GELFAND A E. Gibbs sampling[J]. Journal of the American Statistical Association, 2000, 95(452): 1300-1304. doi: 10.1080/01621459.2000.10474335
|
[20] |
MCFADDEN D. The measurement of urban travel demand[J]. Journal of Public Economics, 1974, 3(4): 303-328. doi: 10.1016/0047-2727(74)90003-6
|
[21] |
HENSHER D A, GREENE W H. The mixed logit model: the state of practice[J]. Transportation, 2003, 30: 133-176. doi: 10.1023/A:1022558715350
|
[22] |
SONG Xiang. Personalization of future urban mobility[D]. Cambridge: Massachusetts Institute of Technology, 2018.
|
[23] |
MCFADDEN D, TRAIN K. Mixed MNL models for discrete response[J]. Journal of Applied Econometrics, 2000, 15(5): 447-470. doi: 10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1
|
[24] |
TRAIN K. Mixed logit with a flexible mixing distribution[J]. Journal of Choice Modelling, 2016, 19: 40-53. doi: 10.1016/j.jocm.2016.07.004
|
[25] |
LEE L F. Simulated maximum likelihood estimation of dynamic discrete choice statistical models some Monte Carlo results[J]. Journal of Econometrics, 1997, 82(1): 1-35. doi: 10.1016/S0304-4076(97)00014-6
|
[26] |
BANSAL P, KRUEGER R, BIERLAIRE M, et al. Bayesian estimation of mixed multinomial logit models: advances and simulation-based evaluations[J]. Transportation Research Part B: Methodological, 2020, 131: 124-142. doi: 10.1016/j.trb.2019.12.001
|
[27] |
CHIB S, GREENBERG E. Understanding the metropolis-Hastings algorithm[J]. The American Statistician, 1995, 49(4): 327-335.
|
[28] |
DANAF M, BECKER F, SONG Xiang, et al. Online discrete choice models: applications in personalized recommendations[J]. Decision Support Systems, 2019, 119: 35-45.
|
[29] |
BEN-AKIVA M, MCFADDEN D, TRAIN K. Foundations of stated preference elicitation: consumer behavior and choice-based conjoint analysis[J]. Foundations and Trends in Econometrics, 2019, 10(1/2): 1-144.
|
[30] |
DINH C T, TRAN N H, NGUYEN M N, et al. Federated learning over wireless networks: convergence analysis and resource allocation[J]. IEEE/ACM Transactions on Networking, 2020, 29(1): 398-409.
|