Citation: | WANG Shun-chao, LI Zhi-bin, CAO Qi, WANG Bing-tong, DING Hong-liang. Reciprocal velocity obstacle algorithm for collision risk avoidance of intelligent connected vehicles[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 264-282. doi: 10.19818/j.cnki.1671-1637.2023.05.019 |
[1] |
郭延永, 刘佩, 袁泉, 等. 网联自动驾驶道路交通安全研究综述[J/OL]. 交通运输工程学报, 2023,
GUO Yan-yong, LIU Pei, YUAN Quan, et al. Review of research on road traffic safety of connected and automated vehicles[J/OL]. Journal of Traffic and Transportation Engineering, 2023,
|
[2] |
GUO Yan-yong, SAYED T, ZHENG Lai. A hierarchical Bayesian peak over threshold approach for conflict-based before-after safety evaluation of leading pedestrian intervals[J]. Accident Analysis and Prevention, 2020, 147: 105772. doi: 10.1016/j.aap.2020.105772
|
[3] |
郭延永, 刘攀, 吴瑶, 等. 基于交通冲突模型的信号交叉口渠化岛设置方法[J]. 交通运输工程学报, 2017, 17(4): 140-148. doi: 10.3969/j.issn.1671-1637.2017.04.015
GUO Yan-yong, LIU Pan, WU Yao, et al. Design approach of channelized island based on traffic conflict models at signalized intersection[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 140-148. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.04.015
|
[4] |
杨敏, 王立超, 张健, 等. 面向智慧高速的合流区协作车辆冲突解脱协调方法[J]. 交通运输工程学报, 2020, 20(3): 217-224. doi: 10.19818/j.cnki.1671-1637.2020.03.020
YANG Min, WANG Li-chao, ZHANG Jian, et al. Collaborative method of vehicle conflict resolution in merging area for intelligent expressway[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 217-224. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.03.020
|
[5] |
王建强, 郑讯佳, 黄荷叶. 驾驶人驾驶决策机制遵循最小作用量原理[J]. 中国公路学报, 2020, 33(4): 155-168. doi: 10.3969/j.issn.1001-7372.2020.04.016
WANG Jian-qiang, ZHENG Xun-jia, HUANG He-ye. Decision-making mechanism of the drivers following the principle of least action[J]. China Journal of Highway and Transport, 2020, 33(4): 155-168. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.04.016
|
[6] |
ALBAKER B M, RAHIM N A. Unmanned aircraft collision detection and resolution: concept and survey[C]//IEEE. 20105th IEEE Conference on Industrial Electronics and Applications. New York: IEEE, 2010: 248-253.
|
[7] |
VELASCO M G A, BORST C, ELLERBROEK J, et al. The use of intent information in conflict detection and resolution models based on dynamic velocity obstacles[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2297-2302. doi: 10.1109/TITS.2014.2376031
|
[8] |
FIORINI P, SHILLER Z. Motion planning in dynamic environments using velocity obstacles[J]. The International Journal of Robotics Research, 1998, 17(7): 760-772. doi: 10.1177/027836499801700706
|
[9] |
WILKIE D, VAN DEN BERG J, MANOCHA D. Generalized velocity obstacles[C]//IEEE. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2009: 5573-5578.
|
[10] |
盛鹏程, 曾小松, 罗新闻, 等. 基于贝叶斯概率估计的智能电动车动态目标避障算法[J]. 中国公路学报, 2019, 32(6): 96-104. doi: 10.19721/j.cnki.1001-7372.2019.06.010
SHENG Peng-cheng, ZENG Xiao-song, LUO Xin-wen, et al. Multi-objective dynamic obstacle avoidance algorithm of intelligent electric vehicles based on Bayesian theory[J]. China Journal of Highway and Transport, 2019, 32(6): 96-104. (in Chinese) doi: 10.19721/j.cnki.1001-7372.2019.06.010
|
[11] |
LIU Zhi-xian, YUAN Xiao-fang, HUANG Guo-ming, et al. Two potential fields fused adaptive path planning system for autonomous vehicle under different velocities[J]. ISA Transactions, 2021, 112: 176-185. doi: 10.1016/j.isatra.2020.12.015
|
[12] |
WANG Shao-bo, ZHANG Ying-jun, LI Lian-bo. A collision avoidance decision-making system for autonomous ship based on modified velocity obstacle method[J]. Ocean Engineering, 2020, 215: 107910. doi: 10.1016/j.oceaneng.2020.107910
|
[13] |
CHEN Peng-fei, HUANG Ya-min, PAPADIMITRIOU E, et al. An improved time discretized non-linear velocity obstacle method for multi-ship encounter detection[J]. Ocean Engineering, 2020, 196: 106718. doi: 10.1016/j.oceaneng.2019.106718
|
[14] |
YANG Xiu-xia, ZHANG Yi, ZHOU Wei-wei. Obstacle avoidance method of three-dimensional obstacle spherical cap[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 1058-1068. doi: 10.21629/JSEE.2018.05.16
|
[15] |
SEO J, KIM Y, KIM S, et al. Collision avoidance strategies for unmanned aerial vehicles in formation flight[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2718-2734. doi: 10.1109/TAES.2017.2714898
|
[16] |
HAN Rui-hua, CHEN Sheng-duo, WANG Shuai-jun, et al. Reinforcement learned distributed multi-robot navigation with reciprocal velocity obstacle shaped rewards[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 5896-5903. doi: 10.1109/LRA.2022.3161699
|
[17] |
XIE Zhan-teng, DAMES P. DRL-VO: earning to navigate through crowded dynamic scenes using velocity obstacles[J]. IEEE Transactions on Robotics, 2023, 39(4): 2700-2719. doi: 10.1109/TRO.2023.3257549
|
[18] |
HUANG Ji-hao, ZENG Jun, CHI Xue-min, et al. Velocity obstacle for polytopic collision avoidance for distributed multi-robot systems[J]. IEEE Robotics and Automation Letters, 2023, 8(6): 3502-3509. doi: 10.1109/LRA.2023.3269295
|
[19] |
WAKABAYASHI T, SUZUKI Y, SUZUKI S. Dynamic obstacle avoidance for multi-rotor UAV using chance-constraints based on obstacle velocity[J]. Robotics and Autonomous Systems, 2023, 160: 104320. doi: 10.1016/j.robot.2022.104320
|
[20] |
ALONSO-MORA J, BEARDSLEY P, SIEGWART R. Cooperative collision avoidance for nonholonomic robots[J]. IEEE Transactions on Robotics, 2018, 34(2): 404-420. doi: 10.1109/TRO.2018.2793890
|
[21] |
BAREISS D, BERG J. Generalized reciprocal collision avoidance[J]. International Journal of Robotics Research, 2015, 34(2): 1501-1514.
|
[22] |
陈海璐. 基于粒子群算法和速度障碍法的无人机避险方法研究[D]. 石家庄: 河北科技大学, 2020.
CHEN Hai-lu. Research on the method of UAV avoidance based on particle swarm optimization and velocity obstacle[D]. Shijiazhuang: Hebei University of Science and Technology, 2020. (in Chinese)
|
[23] |
ZHU Xiao-min, YI Jian-jun, DING Hong-kai, et al. Velocity obstacle based on vertical ellipse for multi-robot collision avoidance[J]. Journal of Intelligent and Robotic Systems, 2020, 99(1): 183-208. doi: 10.1007/s10846-019-01127-6
|
[24] |
彭威. 基于社会力的椭圆行人动力学模型[D]. 南京: 南京大学, 2016.
PENG Wei. Elliptical pedestrian model based on social force[D]. Nanjing: Nanjing University, 2016. (in Chinese)
|
[25] |
LI Lin-heng, GAN Jing, YI Zi-wei, et al. Risk perception and the warning strategy based on safety potential field theory[J]. Accident Analysis and Prevention, 2020, 148: 105805. doi: 10.1016/j.aap.2020.105805
|
[26] |
LU Bing, LI Guo-fa, YU Hui-long, et al. Adaptive potential field-based path planning for complex autonomous driving scenarios[J]. IEEE Access, 2020, 8: 225294-225305. doi: 10.1109/ACCESS.2020.3044909
|
[27] |
LI Lin-heng, GAN Jing, JI Xin-kai, et al. Dynamic driving risk potential field model under the connected and automated vehicles environment and its application in car-following modeling[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 122-141. doi: 10.1109/TITS.2020.3008284
|
[28] |
VAN DENBERG J, LIN Ming, MANOCHA D. Reciprocal velocity obstacles for real-time multi-agent navigation[C]//IEEE. 2008 IEEE International Conference on Robotics and Automation. New York: IEEE, 2008: 1928-1935.
|
[29] |
CHEN Peng-fei, HUANG Ya-min, PAPADIMITRIOU E, et al. Global path planning for autonomous ship: a hybrid approach of fast marching square and velocity obstacles methods[J]. Ocean Engineering, 2020, 214: 107793. doi: 10.1016/j.oceaneng.2020.107793
|
[30] |
WANG Shun-chao, LI Zhi-bin, WANG Bing-tong, et al. Velocity obstacle-based collision avoidance and motion planning framework for connected and automated vehicles[J]. Transportation Research Record, 2022, 2676(5): 748-766. doi: 10.1177/03611981211070286
|
[31] |
ZHONG Xun-yu, PENG Xia-fu, ZHOU Jie-hua. Dynamic collision avoidance of mobile robot based on velocity obstacles[C]//IEEE. Proceedings of 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE). New York: IEEE, 2011: 2410-2413.
|
[32] |
LI Bo-yuan, DU Hai-ping, LI Wei-hua. A potential field approach-based trajectory control for autonomous electric vehicles with in-wheel motors[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(8): 2044-2055. doi: 10.1109/TITS.2016.2632710
|
[33] |
HUANG Zi-chao, CHU Duan-feng, WU Chao-zhong, et al. Path planning and cooperative control for automated vehicle platoon using hybrid automata[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 959-974. doi: 10.1109/TITS.2018.2841967
|
[34] |
YI Zi-wei, LI Lin-heng, QU Xu, et al. Using artificial potential field theory for a cooperative control model in a connected and automated vehicles environment[J]. Transportation Research Record, 2020, 2674(9): 1005-1018. doi: 10.1177/0361198120933271
|
[35] |
WANG Jian-qiang, WU Jian, ZHENG Xun-jia, et al. Driving safety field theory modeling and its application in pre-collision warning system[J]. Transportation Research Part C: Emerging Technologies, 2016, 72: 306-324. doi: 10.1016/j.trc.2016.10.003
|
[36] |
WANG Jian-qiang, WU Jian, LI Yang. The driving safety field based on driver-vehicle-road interactions[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4): 2203-2214. doi: 10.1109/TITS.2015.2401837
|
[37] |
SEDER M, PETROVI AC'G I. Dynamic window based approach to mobile robot motion control in the presence of moving obstacles[C]//IEEE. Proceedings of 2007 IEEE International Conference on Robotics and Automation. New York: IEEE, 2007: 1986-1991.
|
[38] |
ZHOU Jian, ZHENG Hong-yu, WANG Jun-min, et al. Multiobjective optimization of lane-changing strategy for intelligent vehicles in complex driving environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1291-1308. doi: 10.1109/TVT.2019.2956504
|
[39] |
WANG Shun-chao, LI Zhi-bin, CAO Ze-hong, et al. Jam-absorption driving strategy for improving safety near oscillations in connected vehicle environment considering consequential jams [J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(2): 41-52. doi: 10.1109/MITS.2021.3050889
|
[40] |
盛鹏程, 罗新闻, 李景蒲, 等. 智能电动车弯曲道路场景中的避障路径规划[J]. 交通运输工程学报, 2020, 20(2): 195-204. doi: 10.19818/j.cnki.1671-1637.2020.02.016
SHENG Peng-cheng, LUO Xin-wen, LI Jing-pu, et al. Obstacle avoidance path planning of intelligent electric vehicles in winding road scene[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 195-204. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.016
|
[41] |
王顺超, 李志斌, 吴瑶, 等. 面向瓶颈多簇运动波消除的拥堵吸收智能驾驶模型[J]. 中国公路学报, 2022, 35(1): 137-150. doi: 10.3969/j.issn.1001-7372.2022.01.012
WANG Shun-chao, LI Zhi-bin, WU Yao, et al. An intelligent jam-absorbing driving strategy for eliminating multiple traffic oscillations at bottlenecks[J]. China Journal of Highway and Transport, 2022, 35(1): 137-150. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.01.012
|