Volume 23 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
YANG Biao, MEI Zi, LONG Zhi-qiang. Online anomaly detection method integrating LSTM and MGD for suspension system of maglev trains[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 216-231. doi: 10.19818/j.cnki.1671-1637.2023.06.014
Citation: YANG Biao, MEI Zi, LONG Zhi-qiang. Online anomaly detection method integrating LSTM and MGD for suspension system of maglev trains[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 216-231. doi: 10.19818/j.cnki.1671-1637.2023.06.014

Online anomaly detection method integrating LSTM and MGD for suspension system of maglev trains

doi: 10.19818/j.cnki.1671-1637.2023.06.014
Funds:

National Natural Science Foundation of China 52232013

National Natural Science Foundation of China 52332011

More Information
  • In view of online anomaly detection of suspension system of maglev trains, a detection method based on long short-time memory (LSTM) neural network and multivariate Gaussian distribution (MGD) was proposed. The LSTM time series prediction model for learning the normal operation of the suspension system was established, and the prediction errors under normal conditions were obtained. Based on the prediction errors of the gap, current, and acceleration, the MGD model reflecting the distribution characteristics of the prediction errors under normal conditions was built. The log probability density was used as the detection indicator, the online detection logic was designed, and the threshold was set using F1 score as the evaluation criterion of the detection effect. To verify the effectiveness of the proposed method, the operation line data of the maglev train were used to simulate online data, and the proposed method was applied to detect and analyze track crossing joint, rail smashing, and acceleration signal anomalies. Research results show that the F1 scores of the proposed method for detecting the above three anomalies are 100.00%, 97.85%, and 83.33%, respectively. The detection indicators of the proposed method are significantly different between normal and abnormal conditions, reflecting the specific time period from anomaly occurrence of the suspension system to normal adjustment, and the algorithm takes about 2 s on average. Compared with the method based on the Gaussian distribution of hyperspheres, the proposed method achieves an average improvement of 1.9% in detection rate. Specifically, it achieves a 9.4% increase in detecting short-duration track crossing joint anomaly. Therefore, the proposed method can achieve online anomaly detection of the suspension system's state data.

     

  • loading
  • [1]
    马卫华, 罗世辉, 张敏, 等. 中低速磁浮车辆研究综述[J]. 交通运输工程学报, 2021, 21(1): 199-216. doi: 10.19818/j.cnki.1671-1637.2021.01.009

    MA Wei-hua, LUO Shi-hui, ZHANG Min, et al. Research review on medium and low speed maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 199-216. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.009
    [2]
    邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455-474, 530.

    DENG Zi-gang, LIU Zong-xin, LI Hai-tao, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455-574, 530. (in Chinese)
    [3]
    徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40-49. doi: 10.3969/j.issn.1001-8360.2019.03.006

    XU Fei, LUO Shi-hui, DENG Zi-gang. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40-49. (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.03.006
    [4]
    梁潇, 陈峰, 傅庆湘. 160 km·h-1中速磁浮交通系统的关键技术问题[J]. 城市轨道交通研究, 2019, 22(9): 21-26.

    LIANG Xiao, CHEN Feng, FU Qing-xiang. Key technical issues on 160 km·h-1 medium-speed maglev transit system[J]. Urban Mass Transit, 2019, 22(9): 21-26. (in Chinese)
    [5]
    NASIRI Z R, HEKMATI A. A review of suspension and traction technologies in maglev trains[C]//IEEE. 34th International Power System Conference(PSC). New York: IEEE, 2019: 129-135.
    [6]
    PHAENKONGNGAM T, CHINNAWONG K, PATUMASUIT N, et al. Reviewing propulsion and levitation system for magnetic levitation train[C]//IEEE. 2021 International Electrical Engineering Congress. New York: IEEE, 2021: 185-188.
    [7]
    王平, 梅子, 龙志强. 基于超球体高斯分布的悬浮系统异常检测[J]. 机车电传动, 2021(6): 9-17.

    WANG Ping, MEI Zi, LONG Zhi-qiang. Anomaly detection for suspension systems based on the Gaussian distribution of hyperspheres[J]. Electric Drive for Locomotives, 2021(6): 9-17. (in Chinese)
    [8]
    王平, 梅子, 龙志强. 基于改进典型相关分析的中低速悬浮系统异常检测方法[J]. 同济大学学报(自然科学版), 2022, 50(2): 241-252.

    WANG Ping, MEI Zi, LONG Zhi-qiang. Anomaly detection method of middle-low speed suspension system based on improved canonical correlation analysis[J]. Journal of Tongji University (Natural Science), 2022, 50(2): 241-252. (in Chinese)
    [9]
    罗建辉, 王平. 基于海林格距离和相关系数的中低速悬浮系统异常检测方法[J]. 铁道科学与工程学报, 2022, 19(10): 3096-3106.

    LUO Jian-hui, WANG Ping. Anomaly detection method of middle-low speed suspension system based on Hellinger distance and correlation coefficient[J]. Journal of Railway Science and Engineering, 2022, 19(10): 3096-3106. (in Chinese)
    [10]
    ZHANG Yun-zhou, CHAO Chuang, WU Jun, et al. Magnetic anomaly of long track detection method based on wavelet combining with fractal for high speed maglev transit[J]. Measurement and Control, 2022, 55(7/8): 717-728.
    [11]
    周旭, 温韬, 龙志强. 基于漏检率的磁浮列车悬浮系统异常检测[J]. 西南交通大学学报, 2023, 58(4): 903-912.

    ZHOU Xu, WEN Tao, LONG Zhi-qiang. Anomaly detection of suspension system in maglev train based on missed detection rate[J]. Journal of Southwest Jiaotong University, 2023, 58(4): 903-912. (in Chinese)
    [12]
    龙子凡, 司恩, 罗华军, 等. 一种磁浮列车异常振动监测与诊断方法[J]. 科学技术创新, 2022(10): 21-24.

    LONG Zi-fan, SI En, LUO Hua-jun, et al. A method for monitoring and diagnosing abnormal vibration of maglev train[J]. Scientific and Technological Innovation, 2022(10): 21-24. (in Chinese)
    [13]
    吴峻, 李洪鲁, 张雨馨, 等. 中低速磁浮轨道疑似不平顺的Box-Whisker图筛选法[J]. 交通运输工程学报, 2023, 23(3): 68-76. doi: 10.19818/j.cnki.1671-1637.2023.03.004

    WU Jun, LI Hong-lu, ZHANG Yu-xin, et al. Screening method of suspected irregularity for medium-and-low-speed maglev tracks based on Box-Whisker plot[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 68-76. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.03.004
    [14]
    CHEN Po-yu, YANG Shu-sen, MCCANN J A. Distributed real-time anomaly detection in networked industrial sensing systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3832-3842. doi: 10.1109/TIE.2014.2350451
    [15]
    AHMAD S, LAVIN A, PURDY S, et al. Unsupervised real-time anomaly detection for streaming data[J]. Neurocomputing, 2017, 262: 134-147. doi: 10.1016/j.neucom.2017.04.070
    [16]
    XIE Kun, LI Xiao-can, WANG Xin, et al. On-line anomaly detection with high accuracy[J]. IEEE/ACM Transactions on Networking, 2018, 26(3): 1222-1235. doi: 10.1109/TNET.2018.2819507
    [17]
    LUO Jian, HONG Tao, YUE Meng. Real-time anomaly detection for very short-term load forecasting[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6(2): 235-243. doi: 10.1007/s40565-017-0351-7
    [18]
    FISCH A T M, BARDWELL L, ECKLEY I A. Real time anomaly detection and categorisation[J]. Statistics and Computing, 2022, 32(4): 55. doi: 10.1007/s11222-022-10112-3
    [19]
    ZHOU Yan-jun, REN Huo-rong, LI Zhi-wu, et al. Anomaly detection based on a granular Markov model[J]. Expert Systems with Applications, 2022, 187: 115744. doi: 10.1016/j.eswa.2021.115744
    [20]
    LIU Sheng-hua, ZHOU Bin, DING Quan, et al. Time series anomaly detection with adversarial reconstruction networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 4293-4306. doi: 10.1109/TKDE.2021.3140058
    [21]
    王德文, 杨力平. 智能电网大数据流式处理方法与状态监测异常检测[J]. 电力系统自动化, 2016, 40(14): 122-128. doi: 10.7500/AEPS20150828001

    WANG De-wen, YANG Li-ping. Stream processing method and condition monitoring anomaly detection for big data in smart grid[J]. Automation of Electric Power Systems, 2016, 40(14): 122-128. (in Chinese) doi: 10.7500/AEPS20150828001
    [22]
    陈兴蜀, 江天宇, 曾雪梅, 等. 基于多维时间序列分析的网络异常检测[J]. 工程科学与技术, 2017, 49(1): 144-150.

    CHEN Xing-shu, JIANG Tian-yu, ZENG Xue-mei, et al. Network anomaly detector based on multiple time series analysis[J]. Advanced Engineering Sciences, 2017, 49(1): 144-150. (in Chinese)
    [23]
    李新鹏, 高欣, 阎博, 等. 基于孤立森林算法的电力调度流数据异常检测方法[J]. 电网技术, 2019, 43(4): 1447-1456.

    LI Xin-peng, GAO Xin, YAN Bo, et al. An approach of data anomaly detection in power dispatching streaming data based on isolation forest algorithm[J]. Power System Technology, 2019, 43(4): 1447-1456. (in Chinese)
    [24]
    时磊. 基于LSTMs-Autoencoder的流数据异常检测算法[J]. 仪表技术与传感器, 2021(10): 120-125. doi: 10.3969/j.issn.1002-1841.2021.10.024

    SHI Lei. Anomaly detection algorithm in streaming data based on LSTMs-Autoencoder[J]. Instrument Technique and Sensor, 2021(10): 120-125. (in Chinese) doi: 10.3969/j.issn.1002-1841.2021.10.024
    [25]
    毛文涛, 田思雨, 窦智, 等. 一种基于深度迁移学习的滚动轴承早期故障在线检测方法[J]. 自动化学报, 2022, 48(1): 302-314.

    MAO Wen-tao, TIAN Si-yu, DOU Zhi, et al. A new deep transfer learning-based online detection method of rolling bearing early fault[J]. Acta Automatica Sinica, 2022, 48(1): 302-314. (in Chinese)
    [26]
    陈仲磊, 伊鹏, 陈祥, 等. 基于集成学习的系统调用实时异常检测框架[J]. 计算机工程, 2023, 49(6): 162-169, 179.

    CHEN Zhong-lei, YI Peng, CHEN Xiang, et al. Real-time anomaly detection framework via system calls based on integrated learning[J]. Computer Engineering, 2023, 49(6): 162-169, 179. (in Chinese)
    [27]
    GUE I H V, UBANDO A T, TSENG M, et al. Artificial neural networks for sustainable development: a critical review[J]. Clean Technologies and Environmental Policy, 2020, 22: 1449-1465. doi: 10.1007/s10098-020-01883-2
    [28]
    SHARMA S, SHARMA S, ATHAIYA A. Activation functions in neural networks[J]. International Journal of Engineering Applied Sciences and Technology, 2020, 4(12): 310-316.
    [29]
    SALEHINEJAD H, SANKAR S, BARFETT J, et al. Recent advances in recurrent neural networks[J]. arXiv, 2017, DOI: 10.48550/arXiv.1801.01078.
    [30]
    YU Yong, SI Xiao-sheng, HU Chang-hua, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. doi: 10.1162/neco_a_01199
    [31]
    LIU Dian-yu, SUN Chuan-le, GAO Jun. Machine learning of log-likelihood functions in global analysis of parton distributions[J]. arXiv, 2022, DOI: 10.48550/arXiv.2201.06586.
    [32]
    DING Mei-mei, TIAN Hui. PCA-based network traffic anomaly detection[J]. Tsinghua Science and Technology, 2016, 21(5): 500-509.
    [33]
    杨敏, 张焕国, 傅建明, 等. 基于支持向量数据描述的异常检测方法[J]. 计算机工程, 2005, 31(3): 39-42.

    YANG Min, ZHANG Huan-guo, FU Jian-ming, et al. Anomaly intrusion detection method based on SVDD[J]. Computer Engineering, 2005, 31(3): 39-42. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (108) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return