Volume 24 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
WANG Chun-sheng, ZHAI Mu-sai, WANG Yu-zhu. Research progresses on fatigue in steel bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 9-42. doi: 10.19818/j.cnki.1671-1637.2024.01.002
Citation: WANG Chun-sheng, ZHAI Mu-sai, WANG Yu-zhu. Research progresses on fatigue in steel bridges[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 9-42. doi: 10.19818/j.cnki.1671-1637.2024.01.002

Research progresses on fatigue in steel bridges

doi: 10.19818/j.cnki.1671-1637.2024.01.002
Funds:

National Natural Science Foundation of China 52178105

Ministry of Transport Science and Technology Innovation Talents Promotion Plan 2018-020

Innovation Capability Support Program of Shaanxi Province 2019TD-022

Fundamental Research Funds for the Central Universities 300102219309

More Information
  • Author Bio:

    WANG Chun-sheng(1972-), male, professor, PhD, wcs2000wcs@163.com

  • Received Date: 2023-10-07
    Available Online: 2024-03-13
  • Publish Date: 2024-02-25
  • The research progresses of steel bridge fatigue were systematically generalized and analyzed, and the innovative achievements of steel bridge fatigue load, fatigue mechanism, anti-fatigue design method, fatigue safety monitoring and evaluation, and fatigue safety maintenance and other aspects were summarized. The technical challenges were deeply discussed for steel bridge construction and service maintenance, and the development tendencies were explored for the innovative research of steel bridges. Research results show that (1) the developed vehicle, train, and temperature fatigue load models are matched with the characteristics of traffic loads at bridge sites, structural types and design service life, promoting the improvement of the anti-fatigue design theory for long-lasting steel bridges. (2) The actual fatigue damage of steel bridges can be better reflected by the surfing calculation model derived by the vehicle-temperature coupling fatigue stress. The cumulative fatigue damage under the coupling effect of temperature and vehicles is 10%-15% higher than when only considering the effect of vehicles. (3) A new paradigm of fatigue mechanism research, which integrates physical fatigue test, digital fatigue test and in-situ fatigue test techniques, has emerged, partially altering the traditional understanding of fatigue. The influence laws of distortion-induced deformation ratio and stress ratio on the distortion-induced fatigue behavior and detail fatigue strength were investigated. It is found that the fatigue strength of cable steel wires plummets under the condition of high stress ratio in actual bridges. The objective law is revealed that when the strength grade of cable steel wires increases from 1 670 MPa to 2 060 MPa, the fatigue strength first increases and then decreases. The objective fact is clarified that the fatigue strength of weathering steel bridge details does not decrease after the corrosion. (4) The construction of whole bridge multi-physical field, multi-scale, and multi-probability fatigue twin model has been gradually realized, promoting the advent of steel bridge fatigue metaverse technology characterized by data originality, data interaction, and the symbiosis of virtuality and reality. (5) To solve the design issues of steel bridge details working with fatigue cracks, it is necessary to take the fatigue cracks as the key technical index controlling the structural function and safety, and to adopt the damage tolerance theory for the anti-fatigue design of steel bridges. (6) To break through the technical bottlenecks of crack perception and load acquisition, it is necessary to deeply integrate new artificial intelligence technologies such as acoustic emission, digital filming/photography, computer vision technology, and deep learning, and to create a digital monitoring database for fatigue load and damage of steel bridges, providing comprehensive information for researching on the fatigue mechanisms, design, and evaluation methods of steel bridges. (7) To solve the technical issue that traditional linear cumulative damage evaluation models can not predict the fatigue life of cracked details, it is necessary to establish a digital fatigue evaluation model for steel bridges based on digital twin technology. This will enable precise digital description of fatigue cracks across scales and throughout the entire process, and build an integrated digital fatigue evaluation platform for steel bridges, consisting of intelligent monitoring, twin simulation, intelligent evaluation, and smart decision. (8) Cold reinforcement technique can realize targeted and efficient reinforcement for fatigue cracks in steel bridges with zero or minimal damage to the original structure, allowing implementation without interrupting traffic flow, and has a broad application prospects. (9) Cold reinforcement, hot reinforcement, and cold-hot hybrid reinforcement techniques can be utilized flexibly for steel bridges with different fatigue damage degrees, performance enhancement requirements, and life extension goals, to achieve toughening and light-weighting in the fatigue maintenance of steel bridges.

     

  • loading
  • [1]
    ZHOU Xu-hong, ZHANG Xi-gang. Thoughts on the development of bridge technology in China[J]. Engineering, 2019, 5(6): 1120-1130. doi: 10.1016/j.eng.2019.10.001
    [2]
    DICKER D. Point Pleasant Bridge collapse mechanism analysed[J]. Civil Engineering, 1971, 41(7): 61-66.
    [3]
    FISHER J W, BARTHELEMY B, MERTZ D, et al. Fatigue behavior of full-scale welded bridge attachments (final report)[R]. Bethlehem: Lehigh University, 1980.
    [4]
    WANG Chun-sheng, ZHAI Mu-sai, DUAN Lan, et al. Cold reinforcement and evaluation of steel bridges with fatigue cracks[J]. Journal of Bridge Engineering, 2018, 23(4): 04018014. doi: 10.1061/(ASCE)BE.1943-5592.0001219
    [5]
    王春生, 张静雯, 段兰, 等. 长寿命高性能耐候钢桥研究进展与工程应用[J]. 交通运输工程学报, 2020, 20(1): 1-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001004.htm

    WANG Chun-sheng, ZHANG Jing-wen, DUAN Lan, et al. Research progress and engineering application of long lasting high performance weathering steel bridges[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 1-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202001004.htm
    [6]
    WANG Chun-sheng, DUAN Lan, ZHAI Mu-sai, et al. Steel bridge long-term performance research technology framework and research progress[J]. Advances in Structural Engineering, 2017, 20(1): 51-68. doi: 10.1177/1369433216646005
    [7]
    鲍跃全, 李惠. 人工智能时代的土木工程[J]. 土木工程学报, 2019, 52(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905001.htm

    BAO Yue-quan, LI Hui. Artificial intelligence for civil engineering[J]. China Civil Engineering Journal, 2019, 52(5): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905001.htm
    [8]
    童乐为, 沈祖炎, 陈忠延. 城市道路桥梁的疲劳荷载谱[J]. 土木工程学报, 1997, 30(5): 20-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199705002.htm

    TONG Le-wei, SHEN Zu-yan, CHEN Zhong-yan. Fatigue load spectrum for urban road bridges[J]. China Civil Engineering Journal, 1997, 30(5): 20-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199705002.htm
    [9]
    王春生, 陈惟珍, 陈艾荣, 等. 既有钢桥工作状态模拟与剩余寿命评估[J]. 长安大学学报(自然科学版), 2004, 24(1): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200401011.htm

    WANG Chun-sheng, CHEN Wei-zhen, CHEN Ai-rong, et al. 3D finite-element model simulation and remaining fatigue life assessment of existing steel bridges[J]. Journal of Chang'an University (Natural Science Edition), 2004, 24(1): 43-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL200401011.htm
    [10]
    MIAO T J, CHAN T H T. Bridge live load models from WIM data[J]. Engineering Structures, 2002, 24(8): 1071-1084. doi: 10.1016/S0141-0296(02)00034-2
    [11]
    王荣辉, 池春, 陈庆中, 等. 广州市高架桥疲劳荷载车辆模型研究[J]. 华南理工大学学报: 自然科学版, 2004, 32(12): 94-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200412021.htm

    WANG Rong-hui, CHI Chun, CHEN Qing-zhong, et al. Study on the model of the fatigue-loaded vehicles in Guangzhou trestle bridges[J]. Journal of South China University of Technology: Natural Science Edition, 2004, 32(12): 94-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG200412021.htm
    [12]
    周泳涛, 鲍卫刚, 翟辉, 等. 公路钢桥疲劳设计荷载标准研究[J]. 土木工程学报, 2010, 43(11): 79-85. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201011014.htm

    ZHOU Yong-tao, BAO Wei-gang, ZHAI Hui, et al. Study of standard fatigue design load for steel highway bridges[J]. China Civil Engineering Journal, 2010, 43(11): 79-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201011014.htm
    [13]
    翟慕赛, 王春生, 崔冰, 等. 基于WIM的钢桥面板疲劳荷载模型研究[J]. 桥梁建设, 2017, 47(2): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201702006.htm

    ZHAI Mu-sai, WANG Chun-sheng, CUI Bing, et al. Study of fatigue load models for steel bridge decks based on WIM[J]. Bridge Construction, 2017, 47(2): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201702006.htm
    [14]
    潘际炎. 铁路钢桥疲劳可靠度设计及铁路桥梁疲劳荷载谱研究[J]. 铁道学报, 1992, 14(4): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199204012.htm

    PAN Ji-yan. Research on the design of fatigue reliability of railway steel bridges and on the fatigue load spectrum of railway bridges[J]. Journal of the China Railway Society, 1992, 14(4): 58-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB199204012.htm
    [15]
    王春生, 聂建国, 陈艾荣, 等. 在役公路与铁路钢桥应力谱模拟与疲劳寿命评估[J]. 钢结构, 2002(增): 332-343. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GJIG200408001049.htm

    WANG Chun-sheng, NIE Jian-guo, CHEN Ai-rong, et al. Stress spectrum simulation and fatigue life assessment of existing highway and railway steel bridges[J]. Steel Structure, 2004(S): 332-343. (in Chinese) https://cpfd.cnki.com.cn/Article/CPFDTOTAL-GJIG200408001049.htm
    [16]
    孙伟荣, 李建华, 盛博, 等. 高速铁路桥梁疲劳荷载研究[J]. 结构工程师, 2019, 35(1): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201901009.htm

    SUN Wei-rong, LI Jian-hua, SHENG Bo, et al. Study of fatigue load spectra for high-speed railway bridges[J]. Structural Engineers, 2019, 35(1): 56-60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGGC201901009.htm
    [17]
    王春生, 徐有良, 赵会东, 等. 城市轨道交通钢桥疲劳损伤等效系数研究[J]. 工程力学, 2020, 37(2): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202002009.htm

    WANG Chun-sheng, XU You-liang, ZHAO Hui-dong, et al. Study of damage equivalent factors of urban rail transit steel bridge[J]. Engineering Mechanics, 2020, 37(2): 62-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202002009.htm
    [18]
    翟慕赛, 王春生, 瞿天宇, 等. ERS铺装对钢桥面板疲劳应力影响的测试与分析[J]. 公路交通科技, 2017, 34(2): 68-74, 92. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201702011.htm

    ZHAI Mu-sai, WANG Chun-sheng, QU Tian-yu, et al. Test and analysis of influence of ERS pavement on fatigue stress of steel bridge deck[J]. Journal of Highway and Transportation Research and Development, 2017, 34(2): 68-74, 92. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201702011.htm
    [19]
    FARRERAS-ALCOVER I, CHRYSSANTHOPOULOS M K, ANDERSEN J E. Data-based models for fatigue reliability of orthotropic steel bridge decks based on temperature, traffic and strain monitoring[J]. International Journal of Fatigue, 2017, 95(2): 104-119.
    [20]
    GUO Tong, LI Ai-qun, WANG Hao. Influence of ambient temperature on the fatigue damage of welded bridge decks[J]. International Journal of Fatigue, 2008, 30(6): 1092-1102. doi: 10.1016/j.ijfatigue.2007.08.004
    [21]
    LIU Yang, ZHANG Hai-ping, LIU Yong-ming, et al. Fatigue reliability assessment for orthotropic steel deck details under traffic flow and temperature loading[J]. Engineering Failure Analysis, 2017, 71(1): 179-194.
    [22]
    张海萍, 刘扬, 邓扬, 等. 基于实测数据的扁平钢箱温度梯度疲劳应力谱分析方法[J]. 计算力学学报, 2017, 34(4): 466-473. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201704011.htm

    ZHANG Hai-ping, LIU Yang, DENG Yang, et al. A calculation method of thermal fatigue stress spectrum for flat steel girder box based on measurement data[J]. Chinese Journal of Computational Mechanics, 2017, 34(4): 466-473. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201704011.htm
    [23]
    GUO Tong, LI Ai-qun, LI Jian-hui. Fatigue life prediction of welded joints in orthotropic steel decks considering temperature effect and increasing traffic flow[J]. Structural Health Monitoring, 2008, 7(3): 189-202. doi: 10.1177/1475921708090556
    [24]
    BAYANE I, MANKAR A, BRÜHWILER E, et al. Quantification of traffic and temperature effects on the fatigue safety of a reinforced-concrete bridge deck based on monitoring data[J]. Engineering Structures, 2019, 196: 109357. doi: 10.1016/j.engstruct.2019.109357
    [25]
    WANG Chun-sheng, ZHANG Pei-jie, WU Gen-shu, et al. Thermal fatigue load models for fatigue design of steel box girder bridges[J]. Journal of Constructional Steel Research, 2022, 198: 107560. doi: 10.1016/j.jcsr.2022.107560
    [26]
    WANG Chun-sheng, ZHANG Pei-jie, WU Gen-shu, et al. Fatigue damage evaluation of steel bridges considering thermal effect[J]. Structure and Infrastructure Engineering, 2022, 18(7): 1020-1033. doi: 10.1080/15732479.2022.2039218
    [27]
    王春生, 成锋. 钢桥腹板间隙面外变形疲劳应力分析[J]. 建筑科学与工程学报, 2010, 27(1): 65-72. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201001014.htm

    WANG Chun-sheng, CHENG Feng. Out-of-plane distortional fatigue stress analysis at web gaps of steel bridges[J]. Journal of Architecture and Civil Engineering, 2010, 27(1): 65-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG201001014.htm
    [28]
    WANG Chun-sheng, WANG Yu-zhu, DUAN Lan, et al. Distortion-induced fatigue behavior of vertical stiffener web gaps in steel girder bridges[J]. Thin-Walled Structures, 2022, 180: 109892. doi: 10.1016/j.tws.2022.109892
    [29]
    WANG Chun-sheng, WANG Yu-zhu. Influence of distortion ratio on distortion-induced fatigue behavior of steel girder bridges[J]. Thin-Walled Structures, 2023, 188: 110790. doi: 10.1016/j.tws.2023.110790
    [30]
    WANG Chun-sheng, WANG Yu-zhu, CUI Bing, et al. Numerical simulation of distortion-induced fatigue crack growth using extended finite element method[J]. Structure and Infrastructure Engineering, 2020, 16(1): 106-122. doi: 10.1080/15732479.2019.1650076
    [31]
    CONNOR R J, FISHER J W. Identifying effective and ineffective retrofits for distortion fatigue cracking in steel bridges using field instrumentation[J]. Journal of Bridge Engineering, 2006, 11(6): 745-752. doi: 10.1061/(ASCE)1084-0702(2006)11:6(745)
    [32]
    王春生, 翟慕赛, HOUANKPO T O N. 正交异性钢桥面板典型细节疲劳强度研究[J]. 工程力学, 2020, 37(8): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202008012.htm

    WANG Chun-sheng, ZHAI Mu-sai, HOUANKPO T O N. Fatigue strength of typical details in orthotropic steel bridge deck[J]. Engineering Mechanics, 2020, 37(8): 102-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202008012.htm
    [33]
    王春生, 翟慕赛, HOUANKPO T N O, 等. 正交异性钢桥面板冷维护技术及评价方法[J]. 中国公路学报, 2016, 29(8): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htm

    WANG Chun-sheng, ZHAI Mu-sai, HOUANKPO T N O, et al. Cold maintenance technique and assessment method study for orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(8): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htm
    [34]
    王春生, 李璞玉, 许璐巍. 基于疲劳数字孪生的大跨度桥梁钢桥面板运维技术研究[R]. 西安: 长安大学, 2023.

    WANG Chun-sheng, LI Pu-yu, XU Lu-wei. Research on maintenance technology for steel bridge decks in large span bridges based on fatigue digital twin[R]. Xi'an: Chang'an University, 2023. (in Chinese)
    [35]
    YERATAPALLY S R, LESER P E, HOCHHALTER J D, et al. A digital twin feasibility study (Part Ⅰ): non-deterministic predictions of fatigue life in aluminum alloy 7075-T651 using a microstructure-based multi-scale model[J]. Engineering Fracture Mechanics, 2020, 228: 106888. doi: 10.1016/j.engfracmech.2020.106888
    [36]
    王春生, 翟慕赛, 唐友明, 等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30(3): 82-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703009.htm

    WANG Chun-sheng, ZHAI Mu-sai, TANG You-ming, et al. Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 82-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703009.htm
    [37]
    王春生, 冒宇博, 李璞玉, 等. 斜拉桥钢桥面板顶板-U肋-横隔板过焊孔细节群数字疲劳试验[J]. 交通运输工程学报, 2022, 22(6): 67-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202206004.htm

    WANG Chun-sheng, MAO Yu-bo, LI Pu-yu, et al. Digital fatigue test of detail group of deck-U rib-diaphragm access hole of steel bridge deck in cable-stayed bridge[J]. Journal of Traffic and Transportation Engineering, 2022, 22(6): 67-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202206004.htm
    [38]
    AL-EMRANI M. Fatigue in riveted railway bridges—a study of the fatigue performance of riveted stringers and stringer-to- floor-beam connections[D]. Gothenburg: Chalmers University of Technology, 2002.
    [39]
    史永吉, 杨妍曼, 李之榕, 等. 铁路"老龄"铆接钢桥剩余寿命评估[J]. 中国铁道科学, 1994, 15(1): 66-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK401.005.htm

    SHI Yong-ji, YANG Yan-man, LI Zhi-rong, et al. Remaining life evaluation of old riveted steel railway bridges[J]. China Railway Science, 1994, 15(1): 66-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK401.005.htm
    [40]
    LARSSON T. Material and fatigue properties of old metal bridges[D]. Luleå: Luleå University of Technology, 2006.
    [41]
    PIPINATO A, PELLEGRINO C, BURSI O S, et al. High-cycle fatigue behavior of riveted connections for railway metal bridges[J]. Journal of Constructional Steel Research, 2009, 65(12): 2167-2175. doi: 10.1016/j.jcsr.2009.06.019
    [42]
    胡景雨. 桥梁钢疲劳与断裂性能研究[D]. 西安: 长安大学, 2012.

    HU Jing-yu. Study on fatigue and fracture properties of bridge steel[D]. Xi'an: Chang'an University, 2012. (in Chinese)
    [43]
    JIA Dong-lin, ZHANG Qing-hua, XIONG Lyu-bo, et al. A unified evaluation method for fatigue resistance of riveted joints based on structural stress approach[J]. International Journal of Fatigue, 2022, 160(7): 106871.
    [44]
    BRÜHWILER E, SMITH I F C, HIRT M A. Fatigue and fracture of riveted bridge members[J]. Journal of Structural Engineering, 1990, 116(1): 198-214. doi: 10.1061/(ASCE)0733-9445(1990)116:1(198)
    [45]
    王春生, 段兰. 高超龄服役铆接钢桥性能劣化机理与智能诊治方法[R]. 西安: 长安大学, 2022.

    WANG Chun-sheng, DUAN Lan. Deterioration mechanism and intelligent diagnosis method for aged and overaged riveted steel bridge[R]. Xi'an: Chang'an University, 2022. (in Chinese)
    [46]
    王春生, 段兰. 长寿命高性能钢桥智能设计、建造与管养创新团队资助项目结题报告[R]. 西安: 长安大学, 2023.

    WANG Chun-sheng, DUAN Lan. Final report of the project funded by the innovation team of intelligent design, construction and management of long-lasting high-performance steel bridges[R]. Xi'an: Chang'an University, 2023. (in Chinese)
    [47]
    ZHAO Y, KIM RODDIS W M. Fatigue behavior and retrofit investigation of distortion-induced web gap cracking[J]. Journal of Bridge Engineering, 2007, 12(6): 737-745. doi: 10.1061/(ASCE)1084-0702(2007)12:6(737)
    [48]
    ADAMS C A. Finite element study on bridge details susceptible to distortion-induced fatigue[D]. Lawrence: University of Kansas, 2010.
    [49]
    BOWMAN M D, FU G K, ZHOU Y E, et al. Fatigue evaluation of steel bridges[R]. Washington DC: Transportation Research Board, 2012.
    [50]
    王春生, 王雨竹, 崔冰, 等. 应力比对钢桥腹板间隙面外变形疲劳性能的影响试验[J]. 中国公路学报, 2017, 30(3): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703008.htm

    WANG Chun-sheng, WANG Yu-zhu, CUI Bing, et al. Experiment on effect of stress ratio on out-of-plane distortion-induced fatigue performance of web gaps in steel bridges[J]. China Journal of Highway and Transport, 2017, 30(3): 72-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703008.htm
    [51]
    王雨竹, 舒畅, 王鹏, 等. 钢板梁桥面外变形疲劳效应的数值模拟[J]. 钢结构(中英文), 2021, 36(10): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG202110002.htm

    WANG Yu-zhu, SHU Chang, WANG Peng, et al. Numerical simulation of distortion-induced fatigue effect in steel plate girder bridges[J]. Steel Construction (Chinese and English), 2021, 36(10): 7-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG202110002.htm
    [52]
    刘承虞, 赵廷衡. 孙口黄河大桥整体节点钢桁梁的设计与制造[J]. 桥梁建设, 1996(3): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS603.010.htm

    LIU Cheng-yu, ZHAO Ting-heng. Design and fabrication of steel truss girder with gusset plates shop-welded to members for Sunkou Huanghe River Bridge[J]. Bridge Construction, 1996(3): 44-48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS603.010.htm
    [53]
    刘高, 吴文明, 唐亮, 等. 坝陵河大桥钢桁加劲梁主桁架整体节点疲劳试验[J]. 土木工程学报, 2009, 42(12): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200912023.htm

    LIU Gao, WU Wen-ming, TANG Liang, et al. Fatigue test on integral joint of the main truss of the Baling River Bridge[J]. China Civil Engineering Journal, 2009, 42(12): 142-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200912023.htm
    [54]
    张清华, 魏川, 徐召, 等. 钢桁梁整体焊接节点疲劳性能模型试验[J]. 中国公路学报, 2022, 35(12): 77-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202212007.htm

    ZHANG Qing-hua, WEI Chuan, XU Zhao, et al. Experimental study on fatigue performance of integral welded joints in steel truss bridges[J]. China Journal of Highway and Transport, 2022, 35(12): 77-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202212007.htm
    [55]
    金增洪. 日本多多罗大桥简介[J]. 国外公路, 1999, 19(4): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL199904002.htm

    JIN Zeng-hong. Introduction of Tatara Bridge in Japan[J]. Foreign Highway, 1999, 19(4): 8-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL199904002.htm
    [56]
    李小珍, 蔡婧, 强士中, 等. 南京长江二桥南汊桥索梁锚固结构疲劳试验研究[J]. 工程力学, 2005, 22(1): 223-228, 234. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200501038.htm

    LI Xiao-zhen, CAI Jing, QIANG Shi-zhong, et al. Model fatigue test of cable-girder anchorage system of the 2nd Nanjing Yangtze-river Bridge[J]. Engineering Mechanics, 2005, 22(1): 223-228, 234. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200501038.htm
    [57]
    朱劲松, 肖汝诚, 曹一山. 杭州湾跨海大桥索梁锚固节点模型试验研究[J]. 土木工程学报, 2007, 40(1): 49-53, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200701009.htm

    ZHU Jin-song, XIAO Ru-cheng, CAO Yi-shan. Model test on the cable anchorage of the main girder of the Hangzhou Bay Bridge[J]. China Civil Engineering Journal, 2007, 40(1): 49-53, 59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200701009.htm
    [58]
    么超逸, 蒲黔辉, 施洲, 等. 大跨度铁路钢箱梁斜拉桥索梁锚固结构疲劳性能试验研究[J]. 铁道学报, 2015, 37(8): 72-79. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201508015.htm

    YAO Chao-yi, PU Qian-hui, SHI Zhou, et al. Experiment study on fatigue performance of cable-girder anchorage for long-span railway cable-stayed bridge with steel box girder[J]. Journal of the China Railway Society, 2015, 37(8): 72-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201508015.htm
    [59]
    CUNINGHAME J R. Fatigue classification of welded joints in orthotropic steel bridge decks (TRRL Report 259)[R]. Crowthorne: Transport and Road Research Laboratory, 1990.
    [60]
    TSAKOPOULOS P A, FISHER J W. Full-scale fatigue tests of steel orthotropic deck panel for the Bronx-Whitestone Bridge rehabilitation[J]. Bridge Structures, 2005, 1(1): 55-66. doi: 10.1080/15732480412331294704
    [61]
    LI M, SUZUKI Y, HASHIMOTO K, et al. Experimental study on fatigue resistance of rib-to-deck joint in orthotropic steel bridge deck[J]. Journal of Bridge Engineering, 2018, 23(2): 04017128. doi: 10.1061/(ASCE)BE.1943-5592.0001175
    [62]
    童乐为, 沈祖炎. 开口纵肋的正交异性钢桥面板疲劳试验研究[J]. 中国公路学报, 1997, 10(3): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL703.010.htm

    TONG Le-wei, SHEN Zu-yan. Fatigue tests of orthotropic steel bridge decks with open-shaped longitudinal ribs[J]. China Journal of Highway and Transport, 1997, 10(3): 59-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL703.010.htm
    [63]
    王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201302011.htm

    WANG Chun-sheng, FU Bing-ning, ZHANG Qin, et al. Fatigue test on full-scale orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2013, 26(2): 69-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201302011.htm
    [64]
    刘晓光, 曾志斌. 超大跨度悬索桥正交异性钢桥面板疲劳试验与寿命预测研究[R]. 北京: 中国铁道科学研究院集团有限公司, 2019.

    LIU Xiao-guang, ZENG Zhi-bin. Fatigue test and life prediction of orthotropic steel bridge decks of super-span suspension bridges[R]. Beijing: China Academy of Railway Sciences Co., Ltd., 2019. (in Chinese)
    [65]
    张清华, 崔闯, 卜一之, 等. 港珠澳大桥正交异性钢桥面板疲劳特性研究[J]. 土木工程学报, 2014, 47(9): 110-119. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201409016.htm

    ZHANG Qing-hua, CUI Chuang, BU Yi-zhi, et al. Study on f atigue features of orthotropic decks in steel box girder of Hong Kong-Zhuhai-Macao Bridge[J]. China Civil Engineering Journal, 2014, 47(9): 110-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201409016.htm
    [66]
    袁周致远, 吉伯海, 杨沐野, 等. 正交异性钢桥面板顶板竖向加劲肋焊接接头疲劳性能试验研究[J]. 土木工程学报, 2016, 49(2): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201602009.htm

    YUAN Zhou-zhi-yuan, JI Bo-hai, YANG Mu-ye, et al. Study on fatigue performance of welded joints for out-of-plane gusset in orthotropic steel bridge decks[J]. China Civil Engineering Journal, 2016, 49(2): 69-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201602009.htm
    [67]
    何余良, 陈织文, 叶肖伟, 等. 钢桥腐蚀-疲劳耦合计算模型及影响因素分析[J]. 浙江大学学报(工学版), 2022, 56(12): 2463-2470. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202212015.htm

    HE Yu-liang, CHEN Zhi-wen, YE Xiao-wei, et al. Corrosion- fatigue coupling calculation model of steel bridge and its influencing factor analysis[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(12): 2463-2470. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC202212015.htm
    [68]
    WANG Chun-sheng, ZHAI Mu-sai, LI Hai-ting, et al. Life-cycle cost based maintenance and rehabilitation strategies for cable supported bridges[J]. Advanced Steel Construction, 2015, 11(3): 395-410.
    [69]
    WATSON S C, STAFFORD D G. Cables in trouble[J]. Civil Engineering, 1988, 58(4): 38-41.
    [70]
    TARUI T, MARUYAMA N, EGUCHI T, et al. High strength galvanized steel wire for bridge cables[J]. Structural Engineering International, 2002, 12(3): 209-213. doi: 10.2749/101686602777965342
    [71]
    TAKENA K, MIKI C, SHIMOKAWA H, et al. Fatigue resistance of large-diameter cable for cable-stayed bridges[J]. Journal of Structural Engineering, 1992, 118(3): 701-715. doi: 10.1061/(ASCE)0733-9445(1992)118:3(701)
    [72]
    NAKAMURA S, SUZUMURA K. Experimental study on fatigue strength of corroded bridge wires[J]. Journal of Bridge Engineering, 2013, 18(3): 200-209. doi: 10.1061/(ASCE)BE.1943-5592.0000366
    [73]
    吴冲, 蒋超, 姜旭. 预腐蚀桥梁缆索高强钢丝疲劳试验[J]. 同济大学学报(自然科学版), 2018, 46(12): 1622-1627, 1695. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812002.htm

    WU Chong, JIANG Chao, JIANG Xu. Experiment research on fatigue performance of pre-corroded high-strength bridge wires[J]. Journal of Tongji University (Natural Science), 2018, 46(12): 1622-1627, 1695. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201812002.htm
    [74]
    CUI Chuan-jie, CHEN Ai-rong, MA Ru-jin. An improved continuum damage mechanics model for evaluating corrosion-fatigue life of high-strength steel wires in the real service environment[J]. International Journal of Fatigue, 2020, 135: 105540. doi: 10.1016/j.ijfatigue.2020.105540
    [75]
    王春生, 吕兴豪, 李熙, 等. 桥梁缆索钢丝疲劳性能影响因素试验[J]. 交通运输工程学报, 2023, 23(1): 70-79. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202301005.htm

    WANG Chun-sheng, LYU Xing-hao, LI Xi, et al. Experiments on factors affecting fatigue performance of bridge cable steel wires[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 70-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202301005.htm
    [76]
    徐俊. 拉索损伤演化机理与剩余使用寿命评估[D]. 上海: 同济大学, 2006.

    XU Jun. Damage evolution mechanism and remained service lives evaluation of stayed cables[D]. Shanghai: Tongji University, 2006. (in Chinese)
    [77]
    XU Huai-bing, BAI Na-ni, LAN Cheng-ming, et al. Predictive model for fatigue life in parallel-wire stay cables considering corrosion variability[J]. Structure and Infrastructure Engineering, 2023, 19(7): 964-977. doi: 10.1080/15732479.2021.1994616
    [78]
    YAN Cheng, LIU Cheng-yin, YU Sheng. Fatigue life prediction of stay cables under vehicle load considering corrosion variability[J]. Structures, 2023, 56: 104879. doi: 10.1016/j.istruc.2023.104879
    [79]
    LI Hui, LAN Cheng-ming, JU Yang, et al. Experimental and numerical study of the fatigue properties of corroded parallel wire cables[J]. Journal of Bridge Engineering, 2012, 17(2): 211-220. doi: 10.1061/(ASCE)BE.1943-5592.0000235
    [80]
    李晓章, 谢旭, 潘骁宇, 等. 拱桥吊杆锈蚀高强钢丝疲劳性能试验研究[J]. 土木工程学报, 2015, 48(11): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201511010.htm

    LI Xiao-zhang, XIE Xu, PAN Xiao-yu, et al. Experimental study on fatigue performance of corroded high tensile steel wires of arch bridge hangers[J]. China Civil Engineering Journal, 2015, 48(11): 68-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201511010.htm
    [81]
    郑祥隆, 谢旭, 李晓章, 等. 锈蚀钢丝疲劳断口分析与寿命预测[J]. 中国公路学报, 2017, 30(4): 79-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704010.htm

    ZHENG Xiang-long, XIE Xu, LI Xiao-zhang, et al. Fatigue fracture surface analysis and fatigue life estimation of corroded steel wires[J]. China Journal of Highway and Transport, 2017, 30(4): 79-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201704010.htm
    [82]
    LAN Cheng-ming, XU Yang, LIU Cai-ping, et al. Fatigue life prediction for parallel-wire stay cables considering corrosion effects[J]. International Journal of Fatigue, 2018, 114: 81-91. doi: 10.1016/j.ijfatigue.2018.05.020
    [83]
    王春生, 李熙, 吴一凡. 服役斜拉索钢丝剩余疲劳强度与剩余寿命试验研究[J/OL]. 工程力学. https://link.cnki.net/urlid/11.2595.O3.20231123.1559.004.

    WANG Chun-sheng, LI Xi, WU Yi-fan. Experimental study on remaining fatigue strength and remaining fatigue life of existing stay cable wires[J/OL]. Engineering Mechanics. https://link.cnki.net/urlid/11.2595.O3.20231123.1559.004. (in Chinese)
    [84]
    陈惟珍, KOSTEAS D. 钢桥疲劳设计方法研究[J]. 桥梁建设, 2000(2): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202212008.htm

    CHEN Wei-zhen, KOSTEAS D. Study on fatigue design methods for steel bridges[J]. Bridge Construction, 2000(2): 1-3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202212008.htm
    [85]
    孙利民, 尚志强, 夏烨. 大数据背景下的桥梁结构健康监测研究现状与展望[J]. 中国公路学报, 2019, 32(11): 1-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911002.htm

    SUN Li-min, SHANG Zhi-qiang, XIA Ye. Development and prospect of bridge structural health monitoring in the context of big data[J]. China Journal of Highway and Transport, 2019, 32(11): 1-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911002.htm
    [86]
    KONG Xiang-xiong, LI Jian. Vision-based fatigue crack detection of steel structures using video feature tracking[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33: 783-799. doi: 10.1111/mice.12353
    [87]
    NAIR A, CAI C S. Acoustic emission monitoring of bridges: review and case studies[J]. Engineering Structures, 2010, 32(6): 1704-1714. doi: 10.1016/j.engstruct.2010.02.020
    [88]
    YU J G, ZIEHL P, ZÁRETE B, et al. Prediction of fatigue crack growth in steel bridge components using acoustic emission[J]. Journal of Constructional Steel Research, 2011, 67(8): 1254-1260. doi: 10.1016/j.jcsr.2011.03.005
    [89]
    HAN Zhi-yuan, LUO Hong-yun, CAO Jing-wei, et al. Acoustic emission during fatigue crack propagation in a micro- alloyed steel and welds[J]. Materials Science and Engineering A, 2011, 528(25/26): 7751-7756.
    [90]
    MCKEEFRY J, SHIELD C. Acoustic emission monitoring of fatigue cracks in steel bridge girders[R]. Minneapolis: University of Minnesota, 1999.
    [91]
    POLLOCK A A, SMITH B. Stress-wave-emission monitoring of a military bridge[J]. Non-Destructive Testing, 1972, 5(6): 348-353. doi: 10.1016/0029-1021(72)90063-1
    [92]
    GONG Z, NYBORG E O, OOMMEN G. Acoustic emission monitoring of steel railroad bridges[J]. Materials Evaluation, 1992, 50(7): 883-887.
    [93]
    李冬生, 欧进萍. 声发射技术在拱桥吊杆损伤监测中的应用[J]. 沈阳建筑大学学报(自然科学版), 2007, 23(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200701002.htm

    LI Dong-sheng, OU Jin-ping. Monitoring damage of arch bridge suspender using acoustic emission technique[J]. Journal of Shenyang Jianzhu University (Natural Science), 2007, 23(1): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200701002.htm
    [94]
    钱骥, 孙利民, 蒋永. 高强钢丝断裂声发射试验研究[J]. 振动与冲击, 2014, 33(4): 54-59. doi: 10.3969/j.issn.1000-3835.2014.04.012

    QIAN Ji, SUN Li-min, JIANG Yong. Acoustic emission tests for high-strength wire breakage[J]. Journal of Vibration and Shock, 2014, 33(4): 54-59. (in Chinese) doi: 10.3969/j.issn.1000-3835.2014.04.012
    [95]
    DUAN Lan, WANG Chun-sheng, ZHAI Mu-sai, et al. Monitoring and evaluation of fatigue damage for orthotropic steel deck using acoustic emission technology[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 60-73.
    [96]
    WANG Chun-sheng, WU Yi-fan, SI Hai-peng. Acoustic emission monitoring of bridge cable wires crack propagation[C]// IABSE. Proceedings of IABSE Conference—Risk Intelligence of Infrastructures. Zurich: IABSE, 2020: 106-115.
    [97]
    WANG Chun-sheng, FENG Jin-qiang, CUI Bing. Application of AE technique in steel bridge web gap distortion-induced fatigue performance monitoring[C]// International Association for Structural Control and Monitoring(IASCM). Proceedings of the 7th World Conference on Structural Control and Monitoring. Amsterdam: IASCM, 2018: 2582-2592.
    [98]
    FENG Dong-ming, FENG M Q. Experimental validation of cost-effective vision-based structural health monitoring[J]. Mechanical Systems and Signal Processing, 2017, 88: 199-211. doi: 10.1016/j.ymssp.2016.11.021
    [99]
    ZHANG Bo, ZHOU Li-ming, ZHANG Jian. A methodology for obtaining spatiotemporal information of the vehicles on bridges based on computer vision[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(6): 471-487. doi: 10.1111/mice.12434
    [100]
    CAMPBELL L E, CONNOR R J, WHITEHEAD J M, et al. Benchmark for evaluating performance in visual inspection of fatigue cracking in steel bridges[J]. Journal of Bridge Engineering, 2020, 25(1): 04019128. doi: 10.1061/(ASCE)BE.1943-5592.0001507
    [101]
    DELLENBAUGH L, KONG Xiang-xiong, AL-SALIH H, et al. Development of a distortion-induced fatigue crack characterization methodology using digital image correlation[J]. Journal of Bridge Engineering, 2020, 25(9): 04020063. doi: 10.1061/(ASCE)BE.1943-5592.0001598
    [102]
    KARABULUT B, LOMBAERT G, DEBRUYNE D, et al. Experimental and numerical fatigue assessment of duplex welded transversal stiffeners[J]. International Journal of Fatigue, 2020, 134: 105498. doi: 10.1016/j.ijfatigue.2020.105498
    [103]
    KARABULUT B, ROSSI B. On the fatigue behavior of duplex and high-strength welded cruciform joints[J]. Engineering Structures, 2021, 247: 113161. doi: 10.1016/j.engstruct.2021.113161
    [104]
    李枝军, 王浩, 王仁贵, 等. 基于3D-DIC的正交异性钢桥面板横隔板开口处疲劳性能试验研究[J]. 东南大学学报(自然科学版), 2019, 49(6): 1116-1123. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906014.htm

    LI Zhi-jun, WANG Hao, WANG Ren-gui, et al. Experimental study on fatigue performance of diaphragm openings of orthotropic steel bridge decks based on 3D-DIC[J]. Journal of Southeast University (Natural Science Edition), 2019, 49(6): 1116-1123. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201906014.htm
    [105]
    AL-SALIH H, JUNO M, COLLINS W, et al. Application of a digital image correlation bridge inspection methodology on geometrically complex bifurcated distortion-induced fatigue cracking[J]. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44(11): 3186-3201. doi: 10.1111/ffe.13453
    [106]
    DELLENBAUGH L, KONG X, AL-SALIH H, et al. Development of a distortion-induced fatigue crack characterization methodology using digital image correlation[J]. Journal of Bridge Engineering, 2020, 25(9): 04020063. doi: 10.1061/(ASCE)BE.1943-5592.0001598
    [107]
    YEUM C M, DYKE S J. Vision-based automated crack detection for bridge inspection[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(10): 759-770. doi: 10.1111/mice.12141
    [108]
    HASNI H, ALAVI A H, JIAO P C, et al. Detection of fatigue cracking in steel bridge girders: a support vector machine approach[J]. Archives of Civil and Mechanical Engineering, 2017, 17(3): 609-622. doi: 10.1016/j.acme.2016.11.005
    [109]
    LA H M, DINH T H, PHAM N H, et al. Automated robotic monitoring and inspection of steel structures and bridges[J]. Robotica, 2019, 37(5): 947-967. doi: 10.1017/S0263574717000601
    [110]
    徐斌, 淡丹辉. 服役斜拉索疲劳状态的全场域在线实时监测与智慧感知[J]. 中国公路学报, 2022, 35(6): 158-167. doi: 10.3969/j.issn.1001-7372.2022.06.014

    XU Bin, DAN Dan-hui. Whole-field online real-time monitoring and intelligent perception of fatigue states of cables in service[J]. China Journal of Highway and Transport, 2022, 35(6): 158-167. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.06.014
    [111]
    DUAN Lan, BRÜHWILER E, WANG Chun-sheng. Cold stiffening of orthotropic steel decks by a composite UHPFRC layer[J]. Journal of Constructional Steel Research, 2020, 172: 106209. doi: 10.1016/j.jcsr.2020.106209
    [112]
    XU Yang, BAO Yue-quan, CHEN Jia-hui, et al. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images[J]. Structural Health Monitoring, 2019, 18(3): 653-674. doi: 10.1177/1475921718764873
    [113]
    DUNG C V, SEKIYA H, HIRANO S, et al. A vision-based method for crack detection in gusset plate welded joints of steel bridges using deep convolutional neural networks[J]. Automation in Construction, 2019, 102: 217-229. doi: 10.1016/j.autcon.2019.02.013
    [114]
    KONG Xiang-xiong, LI Jian. Non-contact fatigue crack detection in civil infrastructure through image overlapping and crack breathing sensing[J]. Automation in Construction, 2019, 99: 125-139. doi: 10.1016/j.autcon.2018.12.011
    [115]
    CONNOR J R. A comparison of the in-service response of an orthotropic steel deck with laboratory studies and design assumptions[D]. Bethlehem: Lehigh University, 2002.
    [116]
    XIAO Z, YAMADA K. A method of determining geometric stress for fatigue strength evaluation of steel welded joints[J]. International Journal of Fatigue, 2004, 26(12): 1277-1293. doi: 10.1016/j.ijfatigue.2004.05.001
    [117]
    蒲黔辉, 高立强, 刘振标, 等. 基于热点应力法的正交异性钢桥面板疲劳验算[J]. 西南交通大学学报, 2013, 48(3): 395-401. doi: 10.3969/j.issn.0258-2724.2013.03.001

    PU Qian-hui, GAO Li-qiang, LIU Zhen-biao, et al. Fatigue assessment of orthotropic steel bridge deck based on hot spot stress method[J]. Journal of Southwest Jiaotong University, 2013, 48(3): 395-401. (in Chinese) doi: 10.3969/j.issn.0258-2724.2013.03.001
    [118]
    崔闯, 卜一之, 张清华, 等. 基于热点应力法的正交异性钢桥面板疲劳寿命评估[J]. 桥梁建设, 2014, 44(4): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201404011.htm

    CUI Chuang, BU Yi-zhi, ZHANG Qing-hua, et al. Fatigue life assessment of orthotropic steel deck plate based on hot spot stress method[J]. Bridge Construction, 2014, 44(4): 62-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201404011.htm
    [119]
    揭志羽, 李亚东, 卫星, 等. 复杂应力场下焊接接头疲劳寿命评估的热点应力法[J]. 中国公路学报, 2017, 30(5): 97-103. doi: 10.3969/j.issn.1001-7372.2017.05.013

    JIE Zhi-yu, LI Ya-dong, WEI Xing, et al. Hot spot stress method for fatigue life assessment of welded joints under complex stress fields[J]. China Journal of Highway and Transport, 2017, 30(5): 97-103. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.05.013
    [120]
    AYGÜL M, BOKESJÖ M, HESHMATI M, et al. A comparative study of different fatigue failure assessments of welded bridge details[J]. International Journal of Fatigue, 2013, 49(2): 62-72.
    [121]
    PARK W, MIKI C. Fatigue assessment of large-size welded joints based on the effective notch stress approach[J]. International Journal of Fatigue, 2008, 30(9): 1556-1568. doi: 10.1016/j.ijfatigue.2007.11.012
    [122]
    PEDERSEN M M, MOURITSEN O Ø, HANSEN M R, et al. Re-analysis of fatigue data for welded joints using the notch stress approach[J]. International Journal of Fatigue, 2010, 32(10): 1620-1626. doi: 10.1016/j.ijfatigue.2010.03.001
    [123]
    祝志文, 钱六五. 基于有效缺口应力法的正交异性钢桥面板疲劳评价[J]. 湖南大学学报(自然科学版), 2015, 42(9): 59-67. doi: 10.3969/j.issn.1674-2974.2015.09.008

    ZHU Zhi-wen, QIAN Liu-wu. Fatigue assessment of orthotropic steel bridge deck based on the effective notch stress method[J]. Journal of Hunan University (Natural Sciences), 2015, 42(9): 59-67. (in Chinese) doi: 10.3969/j.issn.1674-2974.2015.09.008
    [124]
    LI Jun, ZHANG Qing-hua, BAO Yi-zhi, et al. An equivalent structural stress-based fatigue evaluation framework for rib-to-deck welded joints in orthotropic steel deck[J]. Engineering Structures, 2019, 196(19): 109304.
    [125]
    PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(4): 528-533. doi: 10.1115/1.3656900
    [126]
    FORMAN R G, KEARNEY V E, ENGLE R M. Numerical analysis of crack propagation in cyclic-loaded structures[J]. Journal of Basic Engineering, 1967, 89(3): 459-463. doi: 10.1115/1.3609637
    [127]
    WOLF E. Fatigue crack closure under cyclic tension[J]. Engineering Fracture Mechanics, 1970, 2(1): 37-45. doi: 10.1016/0013-7944(70)90028-7
    [128]
    YAZDANI N, ALBRECHT P. Crack growth rates of structural steel in air and aqueous environments[J]. Engineering Fracture Mechanics, 1989, 32(6): 997-1007. doi: 10.1016/0013-7944(89)90015-5
    [129]
    刘艳萍, 陈传尧, 李建兵, 等. 14MnNbq焊接桥梁钢的疲劳裂纹扩展行为研究[J]. 工程力学, 2008, 25(4): 209-213. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200804039.htm

    LIU Yan-ping, CHEN Chuan-yao, LI Jian-bing, et al. Fatigue crack growth behavior for the weld heat-affected zone of 14MnNbq bridge steel[J]. Engineering Mechanics, 2008, 25(4): 209-213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200804039.htm
    [130]
    王春生, 段兰, 郑丽, 等. 桥梁高性能钢HPS 485W疲劳裂纹扩展速率试验研究[J]. 工程力学, 2013, 30(6): 212-216. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201308011.htm

    WANG Chun-sheng, DUAN Lan, ZHENG Li, et al. Fatigue crack growth rate tests of high performance steel HPS 485W for bridges[J]. Engineering Mechanics, 2013, 30(6): 212-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201308011.htm
    [131]
    WANG Chun-sheng, WANG Yu-zhu, DUAN Lan, et al. Fatigue performance evaluation and cold reinforcement for old steel bridges[J]. Structural Engineering International, 2019, 29(4): 563-569. doi: 10.1080/10168664.2019.1593069
    [132]
    WANG Chun-sheng, HAO Long, FU Bing-ning. Fatigue reliability updating evaluation of existing steel bridges[J]. Journal of Bridge Engineering, 2012, 17(6): 955-965. doi: 10.1061/(ASCE)BE.1943-5592.0000354
    [133]
    IMAM B M, RIGHINIOTIS T D, CHRYSSANTHOPOULOS M K. Probabilistic fatigue evaluation of riveted railway bridges[J]. Journal of Bridge Engineering, 2008, 13(3): 237-244. doi: 10.1061/(ASCE)1084-0702(2008)13:3(237)
    [134]
    RIGHINIOTIS T D. Effects of increasing traffic loads on the fatigue reliability of a typical welded bridge detail[J]. International Journal of Fatigue, 2006, 28(8): 873-880. doi: 10.1016/j.ijfatigue.2005.10.005
    [135]
    王春生, 刘鑫, 俞欣, 等. 基于无损探测信息的既有钢桥构件疲劳可靠度更新评估[J]. 土木工程学报, 2010, 43(8): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201008015.htm

    WANG Chun-sheng, LIU Xin, YU Xin, et al. Fatigue reliability updating evaluation using nondestructive inspections for existing steel bridges[J]. China Civil Engineering Journal, 2010, 43(8): 81-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201008015.htm
    [136]
    KISS K, DUNAI L. Fracture mechanics based fatigue analysis of steel bridge decks by two-level cracked models[J]. Computers and Structures, 2002, 80(27-30): 2321-2331. doi: 10.1016/S0045-7949(02)00254-7
    [137]
    鞠晓臣, 田越, 潘永杰, 等. 钢桥贯通疲劳裂纹扩展行为预测方法研究[J]. 桥梁建设, 2015, 45(2): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201502009.htm

    JU Xiao-chen, TIAN Yue, PAN Yong-jie, et al. Study of prediction methods for propagation behavior of through fatigue cracks in steel bridge[J]. Bridge Construction, 2015, 45(2): 53-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS201502009.htm
    [138]
    朱劲松, 郭耀华. 正交异性钢桥面板疲劳裂纹扩展机理及数值模拟研究[J]. 振动与冲击, 2014, 33(14): 40-47, 71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201414008.htm

    ZHU Jin-song, GUO Yao-hua. Numerical simulation on fatigue crack growth of orthotropic steel highway bridge decks[J]. Journal of Vibration and Shock, 2014, 33(14): 40-47, 71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201414008.htm
    [139]
    刘益铭, 张清华, 崔闯, 等. 正交异性钢桥面板三维疲劳裂纹扩展数值模拟方法[J]. 中国公路学报, 2016, 29(7): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607015.htm

    LIU Yi-ming, ZHANG Qing-hua, CUI Chuang, et al. Numerical simulation method for 3D fatigue crack propagation of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(7): 89-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201607015.htm
    [140]
    BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601-620. doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
    [141]
    KIM RODDIS W M, ZHAO Y. Finite-element analysis of steel bridge distortion-induced fatigue[J]. Journal of Bridge Engineering, 2003, 8(5): 259-266. doi: 10.1061/(ASCE)1084-0702(2003)8:5(259)
    [142]
    TAN Hong-mei, HU Xian-qi, WU Xiu-ping, et al. Initial crack propagation of integral joint in steel truss arch bridges and its fatigue life accession[J]. Engineering Failure Analysis, 2021, 130: 105777. doi: 10.1016/j.engfailanal.2021.105777
    [143]
    KACHANOV M. Continuum model of medium with cracks[J]. Journal of the Engineering Mechanics Division, 1980, 106(5): 1039-1051. doi: 10.1061/JMCEA3.0002642
    [144]
    周太全, 陈鸿天. 基于损伤力学—有限元法的大跨度钢桥梁构件疲劳损伤累积分析[J]. 船舶力学, 2009, 13(5): 739-747. https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200905010.htm

    ZHOU Tai-quan, CHEN Hong-tian. Fatigue damage analysis of long span steel bridge welded members using the finite element method and damage mechanics[J]. Journal of Ship Mechanics, 2009, 13(5): 739-747. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBLX200905010.htm
    [145]
    XU Y L, LIU T T, ZHANG W S. Buffeting-induced fatigue damage assessment of a long suspension bridge[J]. International Journal of Fatigue, 2009, 31(3): 575-586. doi: 10.1016/j.ijfatigue.2008.03.031
    [146]
    SUN Bin. A continuum model for damage evolution simulation of the high strength bridge wires due to corrosion fatigue[J]. Journal of Constructional Steel Research, 2018, 146: 76-83. doi: 10.1016/j.jcsr.2018.03.031
    [147]
    YUAN Dao-yun, CUI Chuang, ZHANG Qing-hua, et al. Fatigue damage evaluation of welded joints in steel bridge based on meso-damage mechanics[J]. International Journal of Fatigue, 2022, 161: 106898.
    [148]
    MEHUE P. Repair procedures for cracks in steel orthotropic decks[C]//TRB. Proceedings of the 3rd International Workshop on Bridge Rehabilitation. Washington DC: TRB, 1992: 159-168.
    [149]
    YAO Yi, JI Bo-hai, FU Zhong-qiu, et al. Optimization of stop-hole parameters for cracks at diaphragm-to-rib weld in steel bridges[J]. Journal of Constructional Steel Research, 2019, 162: 105747.
    [150]
    WANG Yu-zhu, WANG Chun-sheng, DUAN Lan. Bonding and bolting angle reinforcement for distortion-induced fatigue in steel girder bridges[J]. Thin-Walled Structures, 2021, 166(9): 108027.
    [151]
    WANG Chun-sheng, WANG Yu-zhu. Effectiveness and durability evaluation of cold reinforcement for distortion-induced fatigue in steel bridges[J]. Engineering Failure Analysis, 2022, 135(5): 106107.
    [152]
    王春生, 孙宇佳, 王茜, 等. 基于粘贴角钢的钢桥面外变形疲劳加固构造: 中国, 201420359658.7[P]. 2015-01-28.

    WANG Chun-sheng, SUN Yu-jia, WANG Qian, et al. Structural configuration of bonded steel angle reinforcement for distortion-induced fatigue in steel bridges: China, 201420359658.7[P]. 2015-01-28. (in Chinese)
    [153]
    王春生, 李璞玉, 许璐巍, 等. 钢桥畸变疲劳细节的冷、热组合加固方法: 中国, 202311295902.8[P]. 2023-11-21.

    WANG Chun-sheng, LI Pu-yu, XU Lu-wei, et al. Cold and heat composite reinforcement method for distortion-induced fatigue details in steel bridges: China, 202311295902.8[P]. 2023-11-21. (in Chinese)
    [154]
    王春生, 李璞玉, 李源. 钢桥面板畸变疲劳的多肢角钢与碳纤维布复合加固构造及工艺: 中国, 202311295898.5[P]. 2023-11-21.

    WANG Chun-sheng, LI Pu-yu, LI Yuan. Structural configuration and construction technique of composite reinforcement combined multi-limb steel angles with carbon fiber sheets for distortion-induced fatigue in steel bridge decks: China, 202311295898.5[P]. 2023-11-21. (in Chinese)
    [155]
    王春生, 刘勃兴, 王雨竹, 等. 钢桥畸变疲劳的碳纤维布与多肢角钢复合加固构造及工艺: 中国, 202311295899. X[P]. 2023-11-24.

    WANG Chun-sheng, LIU Bo-xing, WANG Yu-zhu, et al. Structural configuration and construction technique of composite reinforcement combined multi-limb steel angles with carbon fiber sheets for distortion-induced fatigue in steel bridges: China, 202311295899. X[P]. 2023-11-24. (in Chinese)
    [156]
    KOLSTEIN M H. Fatigue classification of welded joints in orthotropic steel bridge decks[D]. Delft: Delft University of Technology, 2007.
    [157]
    BUITELAAR P, BRAAM R, KAPTIJN N. Reinforced high performance concrete overlay system for rehabilitation and strengthening of orthotropic steel bridge decks[C]//ASCE. 2004 Orthotropic Bridge Conference. Reston: ASCE, 2004: 384-401.
    [158]
    KODAMA T, KAGATA M, HIGASHI S. Effect of reducing strains by SFRC pavement on Ohira Viaduct[C]//FHWA. Proceedings of the 2nd International Orthotropic Bridge Conference. Washington DC: FHWA, 2008: 359-371.
    [159]
    丁楠, 邵旭东. 轻型组合桥面板的疲劳性能研究[J]. 土木工程学报, 2015, 48(1): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704011.htm

    DING Nan, SHAO Xu-dong. Study on fatigue performance of light-weighted composite bridge deck[J]. China Civil Engineering Journal, 2015, 48(1): 74-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704011.htm
    [160]
    WANG Yang, SHAO Xu-dong, CHEN Jie, et al. UHPC-based strengthening technique for orthotropic steel decks with significant fatigue cracking issues[J]. Journal of Constructional Steel Research, 2021, 176(1): 106393.
    [161]
    LIU Yong-ming, ZHANG Qing-hua, BU Yi-zhi, et al. Static and fatigue performance of steel bridge decks strengthened with air-cured UHPC[J]. Structures, 2022, 41(7): 203-214.
    [162]
    王春生, 段兰, 王茜, 等. 超高性能钢纤维混凝土及其制备方法: 中国, 201710624944. X[P]. 2019-10-11.

    WANG Chun-sheng, DUAN Lan, WANG Qian, et al. Ultra-high performance fiber reinforced cementitious composite material (UHPFRC) and its mixed method: China, 201710624944. X[P]. 2019-10-11. (in Chinese)
    [163]
    段兰, 王春生, 王茜, 等. 基于粘结波折件的钢纤维混凝土组合钢桥面板: 中国, 201710621404.6[P]. 2023-04-11.

    DUAN Lan, WANG Chun-sheng, WANG Qian, et al. UHPFRC composite steel bridge decks utilizing bonded corrugated plate shear connectors: China, 201710621404.6[P]. 2023-04-11. (in Chinese)
    [164]
    段兰, 王春生, 王茜, 等. 基于粘结栓钉群的钢纤维混凝土组合钢桥面板: 中国, 201710621402.7[P]. 2020-02-14.

    DUAN Lan, WANG Chun-sheng, WANG Qian, et al. UHPFRC composite steel bridge decks utilizing bonded stud groups: China, 201710621402.7[P]. 2020-02-14. (in Chinese)
    [165]
    王春生, 段兰, 王茜, 等. 基于粘结钢纤维混凝土的组合钢桥面板及其铺筑方法: 中国, 201710625907.0[P]. 2019-10-11.

    WANG Chun-sheng, DUAN Lan, WANG Qian, et al. A UHPFRC composite steel bridge deck utilizing epoxy bonded method and its construction techniques: China, 201710625907.0[P]. 2019-10-11. (in Chinese)
    [166]
    王春生, 张洋, 段兰. 一种采用万向式冷连接键的UHPFRC组合钢桥面板: 中国, 202310570636.9[P]. 2023-09-05.

    WANG Chun-sheng, ZHANG Yang, DUAN Lan. A UHPFRC composite steel bridge deck utilizing universal cold bonded connectors: China, 202310570636.9[P]. 2023-09-05. (in Chinese)
    [167]
    王春生, 张洋, 李璞玉. 钢箱梁冷连接组合钢桥面板受力性能监测与评价[R]. 西安: 长安大学, 2023.

    WANG Chun-sheng, ZHANG Yang, LI Pu-yu. Monitoring and evaluation of mechanical performance of steel box girders with cold composited steel bridge decks[R]. Xi'an: Chang'an University, 2023. (in Chinese)
    [168]
    ROY S, FISHER J W, YEN B T. Fatigue resistance of welded details enhanced by ultrasonic impact treatment (UIT)[J]. International Journal of Fatigue, 2003, 25(9-11): 1239-1247.
    [169]
    YAMADA K, ISHIKAWA T, KAKⅡCHI T. Rehabilitation and improvement of fatigue life of welded joints by ICR treatment[J]. Advanced Steel Construction, 2015, 11(3): 305-321.
    [170]
    TABATA A, AOKI Y, TAKADA Y. Study on improvement of the fatigue durability by filling of mortar in U-shaped rib of orthotropic steel deck[C]//IABMAS. Proceedings of the 5th International Conference on Bridge Maintenance, Safety and Management. London: Taylor and Francis Inc., 2010: 2799-2805.
    [171]
    LYU Zhi-lin, JIANG Xu, QIANG Xu-hong, et al. Strengthening feasibility of damaged steel plates repaired by self-stressing SMA-CFRP overlays[J]. Structural Engineering International, 2023, 33(2): 325-334.
    [172]
    KENNEDY S J, MARTINO A E. SPS bridge decks for new bridges and strengthening of existing bridge decks[J]. Steel Construction, 2015, 8(1): 21-27.
    [173]
    HARRIS D K, COUSINS T, MURRAY T M, et al. Field investigation of a sandwich plate system bridge deck[J]. Journal of Performance of Constructed Facilities, 2008, 22(5): 305-315.
    [174]
    WANG Chun-sheng, WANG Qian, XU Yue. Fatigue evaluation of a strengthened steel truss bridge[J]. Structural Engineering International, 2013, 23(4): 443-449.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (642) PDF downloads(124) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return