Volume 24 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
LIN Shang-shun, JI Bang-chong, XIA Zhang-hua, LIU Jun-ping, LIN Jian-fan, ZHAO Jin-bing. Ultimate flexural capacity of steel reinforced concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 146-157. doi: 10.19818/j.cnki.1671-1637.2024.01.009
Citation: LIN Shang-shun, JI Bang-chong, XIA Zhang-hua, LIU Jun-ping, LIN Jian-fan, ZHAO Jin-bing. Ultimate flexural capacity of steel reinforced concrete beams with rectangular section[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 146-157. doi: 10.19818/j.cnki.1671-1637.2024.01.009

Ultimate flexural capacity of steel reinforced concrete beams with rectangular section

doi: 10.19818/j.cnki.1671-1637.2024.01.009
Funds:

National Natural Science Foundation of China 52078136

Natural Science Foundation of Fujian Province 2020J01477

Transportation Science and Technology Project of Fujian Province 202024

More Information
  • Author Bio:

    LIN Shang-shun(1972-), male, professor, PhD, linshangshun@fjut.edu.cn

    XIA Zhang-hua(1980-), male, professor, PhD, xiatian@fzu.edu.cn

  • Received Date: 2023-08-02
    Available Online: 2024-03-13
  • Publish Date: 2024-02-25
  • JGJ 138—2016, СИ 3-78, YB 9082—2006, AISC 360-16, and YE Lie-ping's formulas were used to calculate the ultimate flexural capacities of 51 collected specimens of steel reinforced concrete (SRC) beams with rectangular sections. The calculated results were compared with the test values. The ranges of parameters of the collected specimens and the reasons for the calculation errors of the existing calculation methods were analyzed. The limitations of the existing calculation methods were discussed in terms of the calculation theory and other aspects. Theoretical derivations were performed, and a method for calculating the ultimate flexural capacities of SRC beams with rectangular sections was proposed, and the ultimate flexural capacities of the collected specimens were calculated by using the proposed method. Analysis results show that some deviations are found between the calculated values obtained by the existing calculation methods and the test values. The height value of the compression zone in СИ 3-78 is not appropriate, and the calculation error of this method increases with the increase in concrete strength. The impact of the relative relationship between the neutral axis and the position of the structural steel on the calculation results is not considered in JGJ 138—2016, and limitations exist. YB 9082—2006 and AISC 360-16 do not take into account the interaction between structural steel and concrete or the arrangement of the structural steel. The YE Lie-ping's formulas produce conservative results. The average ratio of the values calculated by the proposed method for the ultimate flexural capacity to the test values of specimens is 0.953, with a variance of 0.015. The calculated values agree well with the test values. The steel ratios of the collected SRC beam specimens range from 1.77% to 5.77%, which is smaller than the reasonable steel ratio range suggested by YB 9082—2006. Therefore, it is necessary to carry out further supplementary tests of specimens with high steel ratios in the future, so as to improve the calculation method for the ultimate flexural capacity of SRC beams with rectangular sections.

     

  • loading
  • [1]
    叶列平, 方鄂华. 钢骨混凝土构件的受力性能研究综述[J]. 土木工程学报, 2000, 33(5): 1-12. doi: 10.3321/j.issn:1000-131X.2000.05.001

    YE Lie-ping, FANG E-hua. Review on mechanical performance of steel reinforced concrete[J]. China Civil Engineering Journal, 2000, 33(5): 1-12. (in Chinese) doi: 10.3321/j.issn:1000-131X.2000.05.001
    [2]
    IKEDA M. The trend of new technologies on SRC and CFT members in railway structures[J]. Concrete Journal, 2014, 52(1): 102-107. doi: 10.3151/coj.52.102
    [3]
    IKEDA M. Transition and future prospects of research and development of railway steel-concrete hybrid structures[J]. Journal of Japan Society of Civil Engineers Ser. A1 (Structural Engineering and Earthquake Engineering), 2022, 78(5): 1-18.
    [4]
    HONG W K, PARK S C, LEE H C, et al. Composite beam composed of steel and precast concrete (modularized hybrid system). Part Ⅲ: application for a 19-storey building[J]. The Structural Design of Tall and Special Buildings, 2010, DOI: 10.1002/tal.507.
    [5]
    HONG W K, PARK S C, KIM J M, et al. Composite beam composed of steel and precast concrete (modularized hybrid system, MHS). Part Ⅰ: experimental investigation[J]. The Structural Design of Tall and Special Buildings, 2008, DOI: 10.1002/tal.485.
    [6]
    HONG W K, KIM J M, PARK S C, et al. Composite beam composed of steel and pre-cast concrete. (modularized hybrid system, MHS). Part Ⅱ: analytical investigation[J]. The Structural Design of Tall and Special Buildings, 2008, DOI: 10.1002/tal.484.
    [7]
    TONG Le-wei, LIU Bo, XIAN Qing-jun, et al. Experimental study on fatigue behavior of steel reinforced concrete (SRC) beams[J]. Engineering Structures, 2016, 123: 247-262. doi: 10.1016/j.engstruct.2016.05.052
    [8]
    王哲. 预制装配型钢混凝土梁疲劳性能试验研究[D]. 郑州: 河南工业大学, 2023.

    WANG Zhe. Experimental study on fatigue behavior of prefabricated steel reinforced concrete beams[D]. Zhengzhou: Henan University of Technology, 2023. (in Chinese)
    [9]
    肖顺, 童乐为, 刘博, 等. 实腹式型钢混凝土梁疲劳破坏模式与机理研究[J]. 工程力学, 2021, 38(6): 237-245. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202106022.htm

    XIAO Shun, TONG Le-wei, LIU Bo, et al. Investigation on fatigue failure modes and mechanisms of steel reinforced concrete girders[J]. Engineering Mechanics, 2021, 38(6): 237-245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202106022.htm
    [10]
    李峰. 预应力钢骨混凝土梁承载能力试验研究[D]. 重庆: 重庆大学, 2007.

    LI Feng. Experimental research on the carrying capacity of the prestressed steel reinforced concrete beam[D]. Chongqing: Chongqing University, 2007. (in Chinese)
    [11]
    范进, 沈银良, 张斌. 型钢混凝土梁受力性能试验研究[J]. 南京理工大学学报, 2006, 30(6): 709-713. doi: 10.3969/j.issn.1005-9830.2006.06.012

    FAN Jin, SHEN Yin-liang, ZHANG Bin. Expermental investigation on mechanical behavior of steel reinforced concrete beams[J]. Journal of Nanjing University of Science and Technology, 2006, 30(6): 709-713. (in Chinese) doi: 10.3969/j.issn.1005-9830.2006.06.012
    [12]
    傅传国, 李玉莹, 梁书亭. 预应力型钢混凝土简支梁受弯性能试验研究[J]. 建筑结构学报, 2007, 28(3): 62-73. doi: 10.3321/j.issn:1000-6869.2007.03.009

    FU Chuan-guo, LI Yu-ying, LIANG Shu-ting. Experimental study on simply supported prestressed steel reinforced concrete beams[J]. Journal of Building Structures, 2007, 28(3): 62-73. (in Chinese) doi: 10.3321/j.issn:1000-6869.2007.03.009
    [13]
    吴岳刚. C80早龄期型钢混凝土梁受弯性能试验及受弯承载力研究[D]. 北京: 北京交通大学, 2014.

    WU Yue-gang. Experiment and capacity study on bending behavior of C80 steel reinforced concrete beams at early age[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [14]
    王祖华, 陈眼云, 张学文, 等. 劲性钢筋混凝土受弯构件受力性能及计算方法[C]//中国建筑科学研究院. 混凝土结构研究报告选集3. 北京: 中国建筑工业出版社, 1994: 470-478.

    WANG Zu-hua, CHEN Yan-yun. ZHANG Xue-wen, et al. Mechanical performance and calculation method of flexural member of steel reinforced concrete[C]//China Academy of Building Research. Selection of Concrete Structure Research Report 3. Beijing: China Construction Industry Press, 1994: 470-478. (in Chinese)
    [15]
    张建文, 司马玉洲, 张仲先. 不同钢骨含钢率的钢骨混凝土梁抗弯性能试验研究[J]. 建筑结构, 2005, 35(8): 79-80, 51. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200508020.htm

    ZHANG Jian-wen, SIMA Yu-zhou. ZHANG Zhong-xian. Test on flexural behavior of steel reinforced concrete beams with different steel ratios[J]. Building Structure, 2005, 35(8): 79-80, 51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG200508020.htm
    [16]
    MORINO S, WADA A, KIMURA M, et al. Strength and deformation capacity of steel reinforced concrete beams and columns using high-strength steel[C]//Japan Society of Civil Engineers. Second Collection of Thematic Speeches on Composite Structures. Tokyo: Japan Society of Civil Engineers, 1989: 261-268.
    [17]
    沈银良. 型钢混凝土梁受力性能试验研究[D]. 南京: 南京理工大学, 2005.

    SHEN Yin-liang. Experimental study on mechanical behavior of steel reinforced concrete beams[D]. Nanjing: Nanjing University of Technology, 2005. (in Chinese)
    [18]
    袁泉, 杨振坤, 柴洁, 等. 早龄期H型钢混凝土梁受力性能试验研究及有限元分析[J]. 建筑结构学报, 2014, 35(3): 193-200. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201403025.htm

    YUAN Quan, YANG Zhen-kun, CHAI Jie, et al. Experimental study and FEA on mechanical behavior of H-steel reinforced concrete beams at early-age[J]. Journal of Building Structures, 2014, 35(3): 193-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201403025.htm
    [19]
    叶列平. 钢骨混凝土梁的设计方法[J]. 建筑结构, 1997(10): 33-35. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG199710010.htm

    YE Lie-ping. Design method of steel reinforced concrete beams[J]. Building Structure, 1997(10): 33-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG199710010.htm
    [20]
    于云龙, 贺九洲, 杨勇, 等. 部分预制预应力型钢混凝土梁受力性能试验与设计方法研究[J/OL]. 工程力学. http://kns.cnki.net/kcms/detail/11.2595.O3.20230106.2030.015.html.

    YU Yun-long, HE Jiu-zhou, YANG Yong, et al. Experimental study and design method on mechanical behavior of partially precast prestressed steel reinforced concrete beams[J/OL]. Engineering Mechanics. http://kns.cnki.net/kcms/detail/11.2595.O3.20230106.2030.015.html. (in Chinese)
    [21]
    马宁. 预制装配型钢混凝土T型梁抗弯性能研究[D]. 西安: 西安建筑科技大学, 2015.

    MA Ning. Study on flexural behavior of prefabricated and assembly steel reinforced concrete T beam[D]. Xi'an: Xi'an University of Architecture and Technology, 2015. (in Chinese)
    [22]
    杨勇, 薛亦聪, 于云龙, 等. 部分预制装配型钢混凝土梁受力性能试验研究[J]. 土木工程学报, 2018, 51(4): 1-9, 19. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201804002.htm

    YANG Yong, XUE Yi-cong, YU Yun-long, et al. Experimental research on mechanical performance of partially precast steel reinforced concrete beams[J]. China Civil Engineering Journal, 2018, 51(4): 1-9, 19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201804002.htm
    [23]
    王艺霖, 张忠和, 赵洪凯. 受硫酸盐腐蚀的锈蚀型钢混凝土梁抗弯性能劣化研究[J]. 混凝土, 2021(4): 5-8. doi: 10.3969/j.issn.1002-3550.2021.04.002

    WANG Yi-lin, ZHANG Zhong-he, ZHAO Hong-kai. Study on the bending resistance deterioration of rusty steel reinforced concrete beams corroded by sulfate[J]. Concrete, 2021(4): 5-8. (in Chinese) doi: 10.3969/j.issn.1002-3550.2021.04.002
    [24]
    LIANG Bin, ZHANG Zhao-liang, LI Rong. Optimal design of SRC transfer beam of high-rise building[J]. Applied Mechanics and Materials, 2013, 438/439: 1884-1887. doi: 10.4028/www.scientific.net/AMM.438-439.1884
    [25]
    武永丽, 刘鹏云, 李芳军, 等. 大跨度型钢混凝土梁承载力及影响因素分析[C]//天津钢结构协会. 第二十二届全国现代结构工程学术研讨会论文集. 天津: 天津钢结构协会, 2022: 277-282.

    WU Yong-li, LIU Peng-yun, LI Fang-jun, et al. Analysis of bearing capacity and influencing factors of long-span steel concrete beams[C]//Tianjin Steel Structure Society. 22nd National Symposium on Modern Structural Engineering. Tianjin: Tianjin Steel Structure Society, 2022: 277-282. (in Chinese)
    [26]
    宋瑞年, 占玉林, 刘芳, 等. 钢-混凝土组合试件长期推出试验与有限元分析[J]. 交通运输工程学报, 2019, 19(3): 36-45. doi: 10.19818/j.cnki.1671-1637.2019.03.005

    SONG Rui-nian, ZHAN Yu-lin, LIU Fang, et al. Long-term push out test and finite element analysis of steel-concrete composite specimens[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 36-45. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.03.005
    [27]
    MATSUTA T, KITAJIMA M, MAEGAWA K. Experiments and FEM models on semi-composite behavior of SRC structures[C]//ISEC. 9th International Structural Engineering and Construction Conference: Resilient Structures and Sustainable Construction. Hoboken: ISEC Press/Wiley, 2017: 1-6.
    [28]
    WANG Xian-lin, LIU Yu-qing, YANG Fei, et al. Effect of concrete cover on the bond-slip behavior between steel section and concrete in SRC structures[J]. Construction and Building Materials, 2019, 229: 116855. doi: 10.1016/j.conbuildmat.2019.116855
    [29]
    LIU Biao, BAI Guo-liang. Finite element modeling of bond-slip performance of section steel reinforced concrete[J]. Computers and Concrete, 2019, 24(3): 237-247.
    [30]
    陈燕, 何夕平, 马乐乐. 各国规程对型钢混凝土梁抗弯承载力计算对比分析[J]. 青岛理工大学学报, 2016, 37(3): 24-29, 42. https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201603005.htm

    CHEN Yan, HE Xi-ping, MA Le-le. Comparative analysis of beam flexural bearing capacity of solid-wed steel reinforced concrete calculated by codes at home and abroad[J]. Journal of Qingdao University of Technology, 2016, 37(3): 24-29, 42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201603005.htm
    [31]
    叶列平. 钢骨混凝土柱的设计方法[J]. 建筑结构, 1997(5): 8-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG199710010.htm

    YE Lie-ping. Design method of steel reinforced concrete column[J]. Building Structure, 1997(5): 8-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG199710010.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (164) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return