Volume 24 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
WU Fang-wen, ZUO Jian, FAN Zhou, HE Run-bin, LIU Zhuang-zhuang, HE Lan-qing. Investigation on mechanical properties of steel-ECC/UHPC composite girders in negative moment regions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014
Citation: WU Fang-wen, ZUO Jian, FAN Zhou, HE Run-bin, LIU Zhuang-zhuang, HE Lan-qing. Investigation on mechanical properties of steel-ECC/UHPC composite girders in negative moment regions[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 218-231. doi: 10.19818/j.cnki.1671-1637.2024.01.014

Investigation on mechanical properties of steel-ECC/UHPC composite girders in negative moment regions

doi: 10.19818/j.cnki.1671-1637.2024.01.014
Funds:

National Natural Science Foundation of China 52378121

Natural Science Basic Research Project of Shaanxi Province 2022JZ-32

Fundamental Research Funds for the Central Universities 300102212212

More Information
  • Author Bio:

    WU Fang-wen(1980-), male, associate professor, PhD, wufangwen@chd.edu.cn

  • Received Date: 2023-08-27
    Available Online: 2024-03-13
  • Publish Date: 2024-02-25
  • In order to improve the concrete cracking defect in the negative moment regions of steel-concrete composite girders, the engineered cementitious composite (ECC) and ultra-high performance concrete (UHPC) were introduced to replace the normal concrete (NC) to form the steel-ECC/UHPC composite girders. The tests of static mechanical properties in the negative moment regions were carried out, involving one steel-NC composite girder, one steel-ECC composite girder, and two steel-UHPC composite girders. The finite element analysis method was utilized to compare the strain, crack propagation, and distribution characteristics of different types of concretes. The influences of concrete type and reinforcement on the failure mode, bearing capacity and deformation capacity of steel-concrete composite girders were analyzed. Research results show that the steel-concrete composite girders have good overall cooperative performance under negative moments, and the failure modes are all bending failure. Cracks in the ECC and UHPC are delicate, especially in the ECC. Compared with the steel-NC composite girder, the cracking loads of steel-ECC and steel-UHPC composite girders increase by 2.00 and 2.75 times, the flexural stiffnesses increase by 17.23% and 35.73%, and the flexural capacities increase by 9.00% and 6.81%, respectively. Therefore, the UHPC has stronger crack resistance, effectively improving the crack resistance of bridge decks in negative moment region of the steel-concrete composite girders. Moreover, using the ECC and UHPC to replace the NC can enhance the flexural stiffness and bearing capacity of steel-concrete composite girders. There is no significant difference in the cracking load and early stiffness between the reinforced and unreinforced steel-UHPC composite girders. When the unreinforced steel-UHPC composite girder fails, the through cracks form, and its bearing capacity decreases by 13.39% compared to the reinforced steel-UHPC composite girder. As the ECC strength increases, the bearing capacity of steel-ECC composite girder improves significantly. The influence of UHPC strength on the bearing capacity of steel-UHPC composite girder is not obvious. The impact of reinforcement ratio on the bearing capacity of steel-UHPC composite girder can be divided into two stages. When the reinforcement ratio is below 1.6%, the bearing capacity increases significantly, and when it exceeds 1.6%, the growth rate of bearing capacity slows down.

     

  • loading
  • [1]
    聂建国, 陈林, 肖岩. 钢-混凝土组合梁正弯矩区截面的组合抗剪性能[J]. 清华大学学报(自然科学版), 2002(6): 835-838. doi: 10.3321/j.issn:1000-0054.2002.06.034

    NIE Jian-guo, CHEN Lin, XIAO Yan. Composite shear behavior of steel-concrete composite beams under sagging moment[J]. Journal of Tsinghua University(Science and Technology), 2002(6): 835-838. (in Chinese) doi: 10.3321/j.issn:1000-0054.2002.06.034
    [2]
    罗兵, 马冰. 钢-UHPC-NC组合梁负弯矩区受力性能试验研究[J]. 桥梁建设, 2021, 51(1): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202101010.htm

    LUO Bing, MA Bing. Experimental study of fatigue performance of steel-UHPC-NC composite beam in negative moment zone[J]. Bridge Construction, 2021, 51(1): 58-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS202101010.htm
    [3]
    刘永健, 刘江. 钢-混凝土组合梁桥温度作用与效应综述[J]. 交通运输工程学报, 2020, 20(1): 42-59. doi: 10.19818/j.cnki.1671-1637.2020.01.003

    LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.003
    [4]
    WANG Yu-hang, NIE Jian-guo, LI Jian-jun. Study on fatigue property of steel-concrete composite beams and studs[J]. Journal of Constructional Steel Research, 2014, 94: 1-10. doi: 10.1016/j.jcsr.2013.11.004
    [5]
    聂建国, 余志武. 钢-混凝土组合梁在我国的研究及应用[J]. 土木工程学报, 1999, 32(2): 3-8. doi: 10.3321/j.issn:1000-131X.1999.02.001

    NIE Jian-guo, YU Zhi-wu. Research and practice of composite steel-concrete beams in China[J]. China Civil Engineering Journal, 1999, 32(2): 3-8. (in Chinese)) doi: 10.3321/j.issn:1000-131X.1999.02.001
    [6]
    余志武, 张大付, 焦姣. 钢-混凝土连续组合箱梁负弯矩区极限抗弯承载力研究[J]. 铁道科学与工程学报, 2014, 11(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201402002.htm

    YU Zhi-wu, ZHANG Da-fu, JIAO Jiao. Research on ultimate flexural bearing capacity of negative moment area for steel-concrete composite continuous box girder[J]. Journal of Railway Science and Engineering, 2014, 11(2): 1-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201402002.htm
    [7]
    邵旭东, 胡伟业, 邱明红, 等. 组合梁负弯矩区UHPC接缝抗弯性能试验[J]. 中国公路学报, 2021, 34(8): 246-260. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202108021.htm

    SHAO Xu-dong, HU Wei-ye, QIU Ming-hong, et al. Experiment on flexural behavior of UHPC joint in negative moment area of composite bridges[J]. China Journal of Highway and Transport, 2021, 34(8): 246-260. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202108021.htm
    [8]
    SU Qing-tian, DAI Chang-yuan, XU Chen. Full-scale experimental study on the negative flexural behavior of orthotropic steel-concrete composite bridge deck[J]. Journal of Bridge Engineering, 2018, 23(12): 04018097. doi: 10.1061/(ASCE)BE.1943-5592.0001320
    [9]
    戴昌源, 苏庆田. 钢-混凝土组合桥面板负弯矩区裂缝宽度计算[J]. 同济大学学报(自然科学版), 2017, 45(6): 806-813. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201706004.htm

    DAI Chang-yuan, SU Qing-tian. Crack width calculation of steel-concrete composite bridge deck in negative moment region[J]. Journal of Tongji University(Natural Science), 2017, 45(6): 806-813. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201706004.htm
    [10]
    LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites[J]. Journal of Engineering Mechanics, 1992, 118(11): 2246-2264. doi: 10.1061/(ASCE)0733-9399(1992)118:11(2246)
    [11]
    LI V C, WANG Shu-xin, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC)[J]. ACI Materials Journal, 2001, 98(6): 483-492.
    [12]
    曹明莉, 许玲, 张聪. 高延性纤维增强水泥基复合材料的微观力学设计、性能及发展趋势[J]. 硅酸盐学报, 2015, 43(5): 632-642. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201505013.htm

    CAO Ming-li, XU Ling, ZHANG Cong. Review on micromechanical design, performance and development tendency of engineered cementitious composite[J]. Journal of the Chinese Ceramic Society, 2015, 43(5): 632-642. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201505013.htm
    [13]
    潘钻峰, 汪卫, 孟少平, 等. 混杂聚乙烯醇纤维增强水泥基复合材料力学性能[J]. 同济大学学报(自然科学版), 2015, 43(1): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201501006.htm

    PAN Zuan-feng, WANG Wei, MENG Shao-ping, et al. Study on mechanical properties of hybrid PVA fibers reinforced cementitious composites[J]. Journal of Tongji University (Natural Science), 2015, 43(1): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201501006.htm
    [14]
    陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. doi: 10.3969/j.issn.1673-2049.2014.03.002

    CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.03.002
    [15]
    RAHEEM A H A, MAHDY M, MASHALY A A. Mechanical and fracture mechanics properties of ultra-high- performance concrete[J]. Construction and Building Materials, 2019, 213: 561-566. doi: 10.1016/j.conbuildmat.2019.03.298
    [16]
    邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htm

    SHAO Xu-dong, FAN Wei, HUANG Zheng-yu. Application of ultra-high-performance concrete in engineering structures[J]. China Civil Engineering Journal, 2021, 54(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202101001.htm
    [17]
    DONG Bing-qing, PAN Jin-long, LU Cong. Flexural behavior of steel reinforced engineered cementitious composite beams[J]. Journal of Southeast University (English Edition), 2019, 35(1): 72-82.
    [18]
    樊健生, 施正捷, 芶双科, 等. 钢-ECC组合梁负弯矩区受弯性能试验研究[J]. 土木工程学报, 2017, 50(4): 64-72. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704008.htm

    FAN Jian-sheng, SHI Zheng-jie, GOU Shuang-ke, et al. Experimental research on negative bending behavior of steel-ECC composite beams[J]. China Civil Engineering Journal, 2017, 50(4): 64-72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201704008.htm
    [19]
    FAN Jian-sheng, GOU Shuang-ke, DING Ran, et al. Experimental and analytical research on the flexural behaviour of steel-ECC composite beams under negative bending moments[J]. Engineering Structures, 2020, 210: 110309. doi: 10.1016/j.engstruct.2020.110309
    [20]
    孙启力. 钢-混杂纤维ECC组合受力行为及其在桥梁中的应用研究[D]. 北京: 清华大学, 2019.

    SUN Qi-li. The composite behavior of steel and hybrid-fiber engineered cementitious composites and its application in bridge[D]. Beijing: Tsinghua University, 2019. (in Chinese)
    [21]
    樊健生, 刘入瑞, 张君, 等. 采用混杂纤维ECC的叠合板组合梁负弯矩受力性能试验研究[J]. 土木工程学报, 2021, 54(4): 57-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202104007.htm

    FAN Jian-sheng, LIU Ru-rui, ZHANG Jun, et al. Experimental research on mechanical behavior of composite beams with precast slabs and hybrid fiber ECC under negative moment[J]. China Civil Engineering Journal, 2021, 54(4): 57-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202104007.htm
    [22]
    XUE Jun-qing, BRISEGHELLA B, HUANG Fu-yun, et al. Review of ultra-high performance concrete and its application in bridge engineering[J]. Construction and Building Materials, 2020, 260: 119844. doi: 10.1016/j.conbuildmat.2020.119844
    [23]
    张清华, 韩少辉, 贾东林, 等. 新型装配式UHPC华夫型上翼缘组合梁受力性能[J]. 西南交通大学学报, 2019, 54(3): 445-452, 442. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201903001.htm

    ZHANG Qing-hua, HAN Shao-hui, JIA Dong-lin, et al. Mechanical performance of novel prefabricated composite girder with top flange of ultra hight performance concrete waffle deck panel[J]. Journal of Southwest Jiaotong University, 2019, 54(3): 445-452, 442. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201903001.htm
    [24]
    邵旭东, 吴佳佳, 刘榕, 等. 钢-UHPC轻型组合桥梁结构华夫桥面板的基本性能[J]. 中国公路学报, 2017, 30(3): 218-225, 245. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703024.htm

    SHAO Xu-dong, WU Jia-jia, LIU Rong, et al. Basic performance of waffle deck panel of light weight steel-UHPC composite bridge[J]. China Journal of Highway and Transport, 2017, 30(3): 218-225, 245. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201703024.htm
    [25]
    邵旭东, 罗军, 曹君辉, 等. 钢-UHPC轻型组合桥面结构试验及裂缝宽度计算研究[J]. 土木工程学报, 2019, 52(3): 61-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903007.htm

    SHAO Xu-dong, LUO Jun, CAO Jun-hui, et al. Experimental study and crack width calculation of steel-UHPC lightweight composite deck structure[J]. China Civil Engineering Journal, 2019, 52(3): 61-75. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903007.htm
    [26]
    刘新华, 周聪, 张建仁, 等. 钢-UHPC组合梁负弯矩区受力性能试验[J]. 中国公路学报, 2020, 33(5): 110-121. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005010.htm

    LIU Xin-hua, ZHOU Cong, ZHANG Jian-ren, et al. Experiment on negative bending behavior of steel-UHPC composite beams[J]. China Journal of Highway and Transport, 2020, 33(5): 110-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202005010.htm
    [27]
    ZHANG Yang, CAI Shu-kun, ZHU Yan-ping, et al. Flexural responses of steel-UHPC composite beams under hogging moment[J]. Engineering Structures, 2020, 206: 110134. doi: 10.1016/j.engstruct.2019.110134
    [28]
    ZHAO Qiu, XIAO Feng, ZHANG Hao, et al. Behavior and reasonable design of steel-UHPC composite beams under negative moment[J]. Journal of Constructional Steel Research, 2024, 212: 108268. doi: 10.1016/j.jcsr.2023.108268
    [29]
    XU Bo, LIU Yong-jian, ZHU Wei-qing, et al. Comparative study on flexural behavior of steel-UHPC composite beams and steel-ordinary concrete composite beams in the negative moment zone[J]. Structures, 2023, 57: 105288. doi: 10.1016/j.istruc.2023.105288
    [30]
    YUAN Fang, PAN Jin-long, WU Yu-fei. Numerical study on flexural behaviors of steel reinforced engineered cementitious composite (ECC) and ECC/concrete composite beams[J]. Science China Technological Sciences, 2014, 57(3): 637-645. doi: 10.1007/s11431-014-5478-4
    [31]
    杨剑, 方志. 超高性能混凝土单轴受压应力-应变关系研究[J]. 混凝土, 2008(7): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200807009.htm

    YANG Jian, FANG Zhi. Research on stress-strain relation of ultra high performance concrete[J]. Concrete, 2008(7): 11-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF200807009.htm
    [32]
    张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508008.htm

    ZHANG Zhe, SHAO Xu-dong, LI Wen-guang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28(8): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508008.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (156) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return