Volume 24 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
LU Ming-jian, DONG Sheng-jie, YAN Xin-ping, LI Ke, LI Xiao-dong, ZHOU Xiao. Review on ship-based carbon capture, utilization and sequestration technology[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 1-19. doi: 10.19818/j.cnki.1671-1637.2024.02.001
Citation: LU Ming-jian, DONG Sheng-jie, YAN Xin-ping, LI Ke, LI Xiao-dong, ZHOU Xiao. Review on ship-based carbon capture, utilization and sequestration technology[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 1-19. doi: 10.19818/j.cnki.1671-1637.2024.02.001

Review on ship-based carbon capture, utilization and sequestration technology

doi: 10.19818/j.cnki.1671-1637.2024.02.001
Funds:

Strategic Research and Consulting Project of Chinese Academy of Engineering 2022-HYZD-07-02

National Natural Science Foundation of China 51920105014

More Information
  • Author Bio:

    LU Ming-jian(1987-), male, associate professor, PhD, mingjian_lu@whut.edu.cn

    YAN Xin-ping(1959-), male, academician of Chinese Academy of Engineering, professor, PhD, xpyan@whut.edu.cn

  • Received Date: 2023-11-20
    Available Online: 2024-05-16
  • Publish Date: 2024-04-30
  • The researches on ship-based carbon capture, utilization, and sequestration (CCUS) technology conducted in both China and abroad were tracked, and key contents and main research results were sorted out. Based on the advantages and disadvantages of different CCUS technology paths, the application feasibility of current CCUS technology on ships was analyzed. The technical route to carry out CCUS was proposed for the rapidly developing liquefied natural gas ships. The problems existing in current ship-based CCUS technology were summarized, targeted recommendations were put forward, and development direction of key ship-based CCUS technology was discussed. Research results show that the ship-based CCUS technology can significantly reduce emissions in short term and is applicable to the vast majority of carbon-fueled ships, including those in operation and the newly constructed. Foreign countries are actively deploying the ship-based CCUS technology real-ship verification research, but the research in China is mostly at the stage of conceptual design and simulation research. Due to the simple transformation, high technology maturity, and low cost, the chemical absorption method in the post-combustion capture methods is most suitable for the ship-based carbon capture at present. But to solve the problems of high energy consumption and large system sizes, it is necessary to accelerate the exploration of advanced chemical solvents with better performance and more revolutionary capture methods. Liquid storage is currently the most mature storage method, but its safety and economy need improvement. There is an urgent need to accelerate the construction of storage and transportation methods dominated by large CO2 carriers and to promote the construction of CO2 transfer and reception infrastructure at ports and marine platforms. CO2 has great development prospect in oil displacement and gas-freeing in offshore oil-gas fields, seawater desalination, and energy catalytic reforming, but CO2 utilization technology for ships needs to be scaled up and industrialized and requires synergistic development of related industrial technologies. Marine sequestration of liquid CO2 or dry ice is the future development trend, but there is an urgent need to improve relevant standards, laws, and regulations to promote the development of sequestration equipment and technology. It is necessary to explore a set of standardized and systematic carbon emission management modes to promote the mutual matching and promotion of CCUS technology and establish a complete, green, economical, and efficient ship-based CCUS industry chain.

     

  • loading
  • [1]
    袁裕鹏, 王康豫, 尹奇志, 等. 船舶航速优化综述[J]. 交通运输工程学报, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002

    YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, et al. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.002
    [2]
    包甜甜, 连峰, 杨忠振. 航运管理研究综述[J]. 交通运输工程学报, 2020, 20(4): 55-69. doi: 10.19818/j.cnki.1671-1637.2020.04.004

    BAO Tian-tian, LIAN Feng, YANG Zhong-zhen. Research review of shipping management[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 55-69. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.004
    [3]
    贺亚鹏, 严新平, 范爱龙, 等. 船舶智能能效管理技术发展现状及展望[J]. 哈尔滨工程大学学报, 2021, 42(3): 317-324. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202103002.htm

    HE Ya-peng, YAN Xin-ping, FAN Ai-long, et al. Development status and prospects of ship intelligent energy efficiency management technology[J]. Journal of Harbin Engineering University, 2021, 42(3): 317-324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202103002.htm
    [4]
    严新平, 贺亚鹏, 贺宜, 等. 水路交通技术发展趋势[J]. 交通运输工程学报, 2022, 22(4): 1-9. doi: 10.19818/j.cnki.1671-1637.2022.04.001

    YAN Xin-ping, HE Ya-peng, HE Yi, et al. Development trends of waterway transportation technology[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 1-9. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.04.001
    [5]
    Det Norske Veritas. Maritime Forecast to 2050[R]. Oslo: Det Norske Veritas, 2022.
    [6]
    FANG Si-dun, XU Yan, LI Zheng-hao, et al. Optimal sizing of shipboard carbon capture system for maritime greenhouse emission control[J]. IEEE Transactions on Industry Applications, 2019, 55(6): 5543-5553. doi: 10.1109/TIA.2019.2934088
    [7]
    ROS J A, SKYLOGIANNI E, DOEDÉE V, et al. Advancements in ship-based carbon capture technology on board of LNG-fuelled ships[J]. International Journal of Greenhouse Gas Control, 2022, 114: 103575. doi: 10.1016/j.ijggc.2021.103575
    [8]
    GVLER E, ERGIN S. An investigation on the solvent based carbon capture and storage system by process modeling and comparisons with another carbon control methods for different ships[J]. International Journal of Greenhouse Gas Control, 2021, 110: 103438. doi: 10.1016/j.ijggc.2021.103438
    [9]
    WANG Hai-bin, ZHOU Pei-lin, WANG Zhong-cheng. Experimental and numerical analysis on impacts of significant factors on carbon dioxide absorption efficiency in the carbon solidification process[J]. Ocean Engineering, 2016, 113: 133-143. doi: 10.1016/j.oceaneng.2015.12.036
    [10]
    WANG Hai-bin, ZHOU Pei-lin, WANG Zhong-cheng. Reviews on current carbon emission reduction technologies and projects and their feasibilities on ships[J]. Journal of Marine Science and Application, 2017, 16(2): 129-136. doi: 10.1007/s11804-017-1413-y
    [11]
    STEC M, TATARCZUK A, ILUK T, et al. Reducing the energy efficiency design index for ships through a post-combustion carbon capture process[J]. International Journal of Greenhouse Gas Control, 2021, 108: 103333. doi: 10.1016/j.ijggc.2021.103333
    [12]
    OH J, ANANTHARAMAN R, ZAHID U, et al. Process design of onboard membrane carbon capture and liquefaction systems for LNG-fueled ships[J]. Separation and Purification Technology, 2022, 282: 120052. doi: 10.1016/j.seppur.2021.120052
    [13]
    GARCÍA-MARIACA A, LLERA-SASTRESA E. Review on carbon capture in ice driven transport[J]. Energies, 2021, 14(21): 6865. doi: 10.3390/en14216865
    [14]
    BUIRMA M, VLEUGEL J, PRUYN J, et al. Ship-based carbon capture and storage: a supply chain feasibility study[J]. Energies, 2022, 15(3): 813. doi: 10.3390/en15030813
    [15]
    WILLSON P M. Decarbonising the transport system—evaluation of the marine application of advanced carbon capture technology[R]. Chester: PMW Technology, 2020.
    [16]
    DAVISON J. Performance and costs of power plants with capture and storage of CO2[J]. Energy, 2007, 32(7): 1163-1176. doi: 10.1016/j.energy.2006.07.039
    [17]
    BLOMEN E, HENDRIKS C, NEELE F. Capture technologies: improvements and promising developments[J]. Energy Procedia, 2009, 1(1): 1505-1512. doi: 10.1016/j.egypro.2009.01.197
    [18]
    AWOYOMI A, PATCHIGOLLA K, ANTHONY E J. CO2/SO2 emission reduction in CO2 shipping infrastructure[J]. International Journal of Greenhouse Gas Control, 2019, 88: 57-70. doi: 10.1016/j.ijggc.2019.05.011
    [19]
    LONG N V D, LEE D Y, KWAG C, et al. Improvement of marine carbon capture onboard diesel fueled ships[J]. Chemical Engineering and Processing—Process Intensification, 2021, 168: 108535. doi: 10.1016/j.cep.2021.108535
    [20]
    VAN DEN AKKER J. Carbon capture onboard LNG-fueled vessels: a feasibility study[D]. Delft: Delft University of Technology, 2017.
    [21]
    AWOYOMI A, PATCHIGOLLA K, ANTHONY E J. Process and economic evaluation of an onboard capture system for LNG-fueled CO2 carriers[J]. Industrial and Engineering Chemistry Research, 2020, 59(15): 6951-6960. doi: 10.1021/acs.iecr.9b04659
    [22]
    LUO Xiao-bo, WANG Meng-hong. Study of solvent-based carbon capture for cargo ships through process modelling and simulation[J]. Applied Energy, 2017, 195(C): 402-413.
    [23]
    FEENSTRA M, MONTEIRO J, VAN DEN AKKER J T, et al. Ship-based carbon capture onboard of diesel or LNG-fuelled ships[J]. International Journal of Greenhouse Gas Control, 2019, 85: 1-10.
    [24]
    LEE S G, CHOI G B, YOON E S, et al. Modeling and simulation of ship transport of CO2[C]//KARIMI I A, SRINIVASAN R. Proceedings of the 11th International Symposium on Process Systems Engineering. Amsterdam: Elsevier, 2012, 31: 785-789.
    [25]
    SEO Y, CHANG D. Optimization of ship-based CCS[C]//IEEE. 2012 Oceans-Yeosu. New York: IEEE, 2012: 1-9.
    [26]
    SEO Y, LEE S-Y, KIM J, et al. Determination of optimal volume of temporary storage tanks in a ship-based carbon capture and storage (CCS) chain using life cycle cost (LCC) including unavailability cost[J]. International Journal of Greenhouse Gas Control, 2017, 64: 11-22.
    [27]
    ZHOU Pei-lin, WANG Hai-bin. Carbon capture and storage—solidification and storage of carbon dioxide captured on ships[J]. Ocean Engineering, 2014, 91: 172-180.
    [28]
    AL BAROUDI H A, AWOYOMI A, PATCHIGOLLA K, et al. A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage[J]. Applied Energy, 2021, 287: 116510.
    [29]
    The Naval Architect. Cryogenic technology project keeps its cool over carbon targets[EB/OL]. (2020-03-20)[2022-07-01]. https://rina.org.uk/news/cryogenic_technology_project_keeps_its_cool_over_carbon_targets-html/.
    [30]
    WARD J. DecarbonICE—creating a pathway to carbon negative shipping[EB/OL]. (2019-11-29) [2021-11-29]. https://fathom.world/decarbonicetm-creating-a-pathway-to-carbon-negative-shipping/.
    [31]
    Cero 2050. DecarbonICETM[EB/OL]. (2020-09-27)[2021-09-27]. https://cero2050.es/en/decarbonice/.
    [32]
    K Line. World's first small-scale CO2 capture plant on vessel "CC-Ocean" (carbon capture on the ocean) project[EB/OL]. (2020-8-31)[2021-09-27]. https://www.kline.com/news-and-press/2020/08/200831%20World%E2%80%99s%20First%20Small-scale%20CO2%20Capture%20Plant%20on%20Vessel%20~%E2%80%9CCC-Ocean%E2%80%9D%20(Carbon%20Capture%20on%20the%20Ocean)%20Project.pdf.
    [33]
    K Line. Carbon capture on the ocean project: the first ship in the world to conduct CO2 recovery experiments[EB/OL]. (2020-08-31)[2022-08-31].

    K Line. Carbon capture on the ocean project: the first ship in the world to conduct CO2 recovery experiments[EB/OL]. (2020-08-31)[2022-08-31].
    [34]
    SAMPSON J, OGC I. Stena bulk collaborate on mobile carbon capture in shipping[EB/OL]. (2020-08-16)[2022-08-31]. https://www.gasworld.com/ogci-stena-bulk-collaborate-on-mobile-carbon-capture-in-shipping/2019984.article.
    [35]
    Solvangship. Solvang signs deal to decarbonise fleet[EB/OL]. (2021-10-19)[2021-10-23]. https://solvangship.no/2021/10/19/solvang-signs-deal-to-decarbonise-fleet-2/.
    [36]
    The Maritime Executive. How much could carbon capture help shipowners meet CO2 targets? [EB/OL]. (2022-03-18) [2022-07-01]. https://www.maritime-executive.com/article/how-much-could-carbon-capture-help-shipowners-meet-co2-targets.
    [37]
    Global CCS Institute. State of the art: CCS technologies 2022[R]. Melbourne: Global CCS Institute, 2022.
    [38]
    Value Maritime. Value Maritime developed a "plug and play" filtree system[EB/OL]. (2021-09-19)[2022-09-19]. https://valuemaritime.com/services/.
    [39]
    Korea Economic Daily. DSME successfully validates CO2 capture and storage technology on a real ship[EB/OL]. (2022-10-06)[2023-10-07]. https://www.hankyung.com/article/202210068986P.
    [40]
    汤旺杰, 李鹤鸣, 金华标. CCS技术在船舶上应用研究[J]. 内燃机, 2019(3): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-NRJJ201903009.htm

    TANG Wang-jie, LI He-ming, JIN Hua-biao. Application research of CCS technology in ships[J]. Internal Combustion Engines, 2019(3): 21-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NRJJ201903009.htm
    [41]
    孙化栋, 仝永臣, 李岩. CCUS技术在船舶上的应用进展研究[J]. 青岛远洋船员职业学院学报, 2021, 42(4): 21-26. https://www.cnki.com.cn/Article/CJFDTOTAL-QDYY202104005.htm

    SUN Hua-dong, TONG Yong-chen, LI Yan. Research on the application of CCUS technology on ship[J]. Journal of Qingdao Ocean Shipping Mariners College, 2021, 42(4): 21-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDYY202104005.htm
    [42]
    金鼎. CCUS技术在船上的应用前景[J]. 中国船检, 2021(2): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202102010.htm

    JIN Ding. Application prospect of CCUS technology in ships[J]. China Ship Survey, 2021(2): 24-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202102010.htm
    [43]
    吴月辉, 刘诗瑶, 喻思南. 提升固碳能力, 实现双碳目标[N]. 人民日报, 2021-10-10(5).

    WU Yue-hui, LIU Shi-yao, YU Si-nan. Enhancing carbon sequestration capacity to achieve carbon peaking and carbon neutrality goals[N]. People's Daily, 2021-10-10(5). (in Chinese)
    [44]
    李月清. 加速构建CCUS产业链和低碳循环体系[J]. 中国石油企业, 2022(3): 33-34. https://www.cnki.com.cn/Article/CJFDTOTAL-SYQG202203012.htm

    LI Yue-qing. Accelerate the construction of CCUS industry chain and low carbon cycle system[J]. China Petroleum Enterprise, 2022(3): 33-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYQG202203012.htm
    [45]
    王建生. 马玉璞代表: 加快发展海上碳捕集利用与封存[N]. 中国经济导报, 2022-03-08(9).

    WANG Jian-sheng. Representative MA Yu-pu: accelerate the development of offshore carbon capture and storage[N]. China Economic Herald, 2022-03-08(9). (in Chinese)
    [46]
    张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6): 70-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202106008.htm

    ZHANG Xian, LI Yang, MA Qiao, et al. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of CAE, 2021, 231(6): 70-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202106008.htm
    [47]
    薛龙玉. CCUS如何改写航运脱碳[J]. 中国船检, 2022(5): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202205007.htm

    XUE Long-yu. How CCUS rewrites shipping decarbonization[J]. China Ship Survey, 2022(5): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202205007.htm
    [48]
    国际船舶网. 七一一所与山东海运签署船舶碳捕集装置合作协议[EB/OL]. (2021-08)[2021-08-11]. http://www.eworldship.com/html/2021/Manufacturer_0810/173694.html.

    Eworldship. Shanghai Marine Diesel Engine Research Institute and Shandong Shipping Corporation signed a cooperation agreement on ship carbon capture devices[EB/OL]. (2021-08-10)[2022-09-10]. http://www.eworldship.com/html/2021/Manufacturer_0810/173694.html. (in Chinese)
    [49]
    中国船检. 中国船级社颁发全球首份船载二氧化碳捕获与存储系统原理性认可证书[J]. 中国船检, 2022(2): 1. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202202027.htm

    China Ship Survey. China Classification Society issued the world's first ship borne carbon dioxide capture and storage system principle approval certificate[J]. China Ship Survey, 2022(2): 1. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202202027.htm
    [50]
    海德威科技集团(青岛)有限公司. 国内首家!海德威二氧化碳捕集与储存系统取得RINA原理认可[EB/OL]. (2022-07-29)[2022-08-10]. http://www.headwaytech.com/6735.html.

    Headway Technology Group (Qingdao) Co., Ltd. Headway clinched China's first RINA approval on CCS[EB/OL]. (2022-07-29)[2022-08-10]. http://www.headwaytech.com/6735. html. (in Chinese)
    [51]
    海德威科技集团(青岛)有限公司. 行业领先!海德威碳捕获与封存系统(CCS)取得DNV船级社原理认可[EB/OL]. (2022-06-23). [2023-06-23]. http://www.headwaytech.com/6727.html.

    Headway Technology Group (Qingdao) Co., Ltd. Headway CCUS Obtained DNV Approval [EB/OL]. (2022-06-23)[2023-06-23]. http://www.headwaytech.com/6727.html. (in Chinese)
    [52]
    ZHANG Di, BUI M, FAJARDY M, et al. Unlocking the potential of BECCS with indigenous sources of biomass at a national scale[J]. Sustainable Energy and Fuels, 2020, 4(1): 226-253.
    [53]
    KUA H W, PEDAPATI C, LEE R V, et al. Effect of indoor contamination on carbon dioxide adsorption of wood-based biochar-lessons for direct air capture[J]. Journal of Cleaner Production, 2019, 210: 860-871.
    [54]
    GVR T M. Carbon dioxide emissions, capture, storage and utilization: review of materials, processes and technologies[J]. Progress in Energy and Combustion Science, 2022, 89: 100965.
    [55]
    蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究[R]. 北京: 生态环境部环境规划院, 2021.

    CAI Bo-feng, LI Qi, ZHANG Xian, et al. China carbon dioxide capture, utilization and storage (CCUS) annual report (2021)—research on China's CCUS pathway[R]. Beijing: Environmental Planning Institute of the Ministry of Ecological Environment, 2021. (in Chinese)
    [56]
    刘易明, 王甫, 王珺, 等. 燃料电池船舶应用形式及其关键技术[J]. 船舶工程, 2021, 43(3): 18-26, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202103004.htm

    LIU Yi-ming, WANG Fu, WANG Jun, et al. Application form and its key technology of fuel cell ship[J]. Ship Engineering, 2021, 43(3): 18-26, 33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202103004.htm
    [57]
    MADEJSKI P, CHMIEL K, SUBRAMANIAN N, et al. Methods and techniques for CO2 capture: review of potential solutions and applications in modern energy technologies[J]. Energies, 2022, 15(3): 887.
    [58]
    TILAK P, EL-HALWAGI M M. Process integration of calcium looping with industrial plants for monetizing CO2 into value-added products[J]. Carbon Resources Conversion, 2018, 1(2): 191-199.
    [59]
    KNAPIK E, KOSOWSKI P, STOPA J. Cryogenic liquefaction and separation of CO2 using nitrogen removal unit cold energy[J]. Chemical Engineering Research and Design, 2018, 131: 66-79.
    [60]
    ZHANG Zhi-en, WANG Tao, BLUNT M J, et al. Advances in carbon capture, utilization and storage[J]. Applied Energy, 2020, 278: 115627.
    [61]
    LIN Qing-yang, ZHANG Xiao, WANG Tao, et al. Technical perspective of carbon capture, utilization, and storage[J]. Engineering, 2022, 14: 27-32.
    [62]
    BERNHARDSEN I M, KNUUTILA H K. A review of potential amine solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa[J]. International Journal of Greenhouse Gas Control, 2017, 61: 27-48.
    [63]
    LIU Fei, QI Zhi-fu, FANG Meng-xiang, et al. Pilot test of water-lean solvent of 2-(ethylamino) ethanol, 1-methyl-2-pyrrolidinone, and water for post-combustion CO2 capture[J]. Chemical Engineering Journal, 2023, 459: 141634.
    [64]
    LIU Lian-bo, FAN Meng-xiang, XU Shi-sen, et al. Development and testing of a new post-combustion CO2 capture solvent in pilot and demonstration plant[J]. International Journal of Greenhouse Gas Control, 2022, 113: 103513.
    [65]
    王立健, 曹林, 魏志威. 船舶碳捕集技术应用前景与展望[J]. 中国船检, 2020(11): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202011028.htm

    WANG Li-jian, CAO Lin, WEI Zhi-wei. Application prospect and prospect of ship carbon capture technology[J]. China Ship Survey, 2020(11): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202011028.htm
    [66]
    PLAZA M G, RUBIERA F, PEVIDA C, et al. Evaluating the feasibility of a TSA process based on steam stripping in combination with structured carbon adsorbents to capture CO2 from a coal power plant[J]. Energy and Fuels, 2017, 31(9): 9760-9775.
    [67]
    HE Xue-zhong. Polyvinylamine-based facilitated transport membranes for post-combustion CO2 capture: challenges and perspectives from materials to processes[J]. Engineering, 2021, 7(1): 263-279.
    [68]
    YANG Wen-chao, LI Shu-hong, LI Xian-liang, et al. Analysis of a new liquefaction combined with desublimation system for CO2 separation based on N2/CO2 phase equilibrium[J]. Energies, 2015, 8(9): 9495-9508.
    [69]
    BOUNACEUR R, LAPE N, ROIZARD D, et al. Membrane processes for post-combustion carbon dioxide capture: a parametric study[J]. Energy, 2006, 31(14): 2556-2570.
    [70]
    DASHTI H, YEW L Z, LOU Xia. Recent advances in gas hydrate-based CO2 capture[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 195-207.
    [71]
    WANG M, LAWAL A, STEPHENSON P, et al. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review[J]. Chemical Engineering Research and Design, 2011, 89(9): 1609-1624.
    [72]
    OCHEDI F O, YU Jiang-long, YU Hai, et al. Carbon dioxide capture using liquid absorption methods: a review[J]. Environmental Chemistry Letters, 2021, 19(1): 77-109.
    [73]
    MERKEL T C, LIN Hai-qing, WEI Xiao-tong, et al. Power plant post-combustion carbon dioxide capture: an opportunity for membranes[J]. Journal of Membrane Science, 2010, 359(1/2): 126-139.
    [74]
    AARON D, TSOURIS C. Separation of CO2 from flue gas: a review[J]. Separation Science and Technology, 2005, 40(1/2/3): 321-348.
    [75]
    JIANG Kai-qi, FERON P, COUSINS A, et al. Achieving zero/negative-emissions coal-fired power plants using amine-based postcombustion CO2 capture technology and biomass cocombustion[J]. Environmental Science and Technology, 2020, 54(4): 2429-2438.
    [76]
    SEO Y, CHANG D, JUNG J Y, et al. Economic evaluation of ship-based CCS with availability[J]. Energy Procedia, 2013, 37: 2511-2518.
    [77]
    SEO Y, HUH C, LEE S, et al. Comparison of CO2 liquefaction pressures for ship-based carbon capture and storage (CCS) chain[J]. International Journal of Greenhouse Gas Control, 2016, 52(2): 1-12.
    [78]
    SEO Y, YOU H, LEE S, et al. Evaluation of CO2 liquefaction processes for ship-based carbon capture and storage (CCS) in terms of life cycle cost (LCC) considering availability[J]. International Journal of Greenhouse Gas Control, 2015, 35: 1-12.
    [79]
    赵芸. 碳封存, 催生二氧化碳运输船? [J]. 船舶经济贸易, 2021(9): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202404003.htm

    ZHAO Yun. Will carbon sequestration promote development of CO2 transport ships? [J]. Ship Economy and Trade, 2021(9): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202404003.htm
    [80]
    RUBIN E, MEYER L, DE CONINCK H, et al. IPCC special report on carbon dioxide capture and storage[R]. New York: Intergovernmental Panel on Climate Change, 2005.
    [81]
    宋欣珂, 张九天, 王灿. 碳捕集、利用与封存技术商业模式分析[J]. 中国环境管理, 2022, 14(1): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGL202201006.htm

    SONG Xin-ke, ZHANG Jiu-tian, WANG Can. Analysis of the business model for carbon capture, utilization and storage (CCUS) technologies[J]. Chinese Journal of Environmental Management, 2022, 14(1): 38-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHGL202201006.htm
    [82]
    CHAUVY R, DE WEIRELD G. CO2 utilization technologies in Europe: a short review[J]. Energy Technology, 2020, 8(12): 2000627.
    [83]
    CHAUVY R, MEUNIER N, THOMAS D, et al. Selecting emerging CO2 utilization products for short- to mid-term deployment[J]. Applied Energy, 2019, 236: 662-680.
    [84]
    AL-MAMOORI A, KRISHNAMURTHY A, ROWNAGHI A A, et al. Carbon capture and utilization update[J]. Energy Technology, 2017, 5(6): 834-849.
    [85]
    AYYAR A S R, AREGAWI D T, PETERSEN A R, et al. Carbon dioxide-mediated desalination[J]. Journal of the American Chemical Society, 2023, 145(6): 3499-3506.
    [86]
    MALMGREN E, BRYNOLF S, FRIDELL E, et al. The environmental performance of a fossil-free ship propulsion system with onboard carbon capture—a life cycle assessment of the HyMethShip concept[J]. Sustainable Energy and Fuels, 2021, 5(10): 2753-2770.
    [87]
    赵博. 全球低碳船舶项目大盘点[J]. 中国船检, 2021(6): 11-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202106008.htm

    ZHAO Bo. Global low-carbon ship project inventory[J]. China Ship Survey, 2021(6): 11-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ202106008.htm
    [88]
    ILIUTA I, LARACHI F, FONTAINE F-G. Conversion of CO2 from the energy systems on-board ships via catalytic cycloaddition to styrene oxide: modeling and numerical simulation[J]. Industrial and Engineering Chemistry Research, 2022, 61(47): 17275-17296.
    [89]
    王江海, 孙贤贤, 徐小明, 等. 海洋碳封存技术: 现状、问题与未来[J]. 地球科学进展, 2015, 30(1): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201501005.htm

    WANG Jiang-hai, SUN Xian-xian, XU Xiao-ming, et al. Marine carbon sequestration: current situation, problems and future[J]. Advances in Earth Science, 2015, 30(1): 17-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201501005.htm
    [90]
    VOORMEIJ D A, SIMANDL G. Geological, ocean, and mineral CO2 sequestration options: a technical review[J]. Geoscience Canada, 2004, 31(1): 11-22.
    [91]
    DAI Zhen-xue, ZHANG Ye, STAUFFER P, et al. Injectivity evaluation for offshore CO2 sequestration in marine sediments[J]. Energy Procedia, 2017, 114: 2921-2932.
    [92]
    NAKASHIKI N, OHSUMI T, SHITASHIMA T. Sequestering of CO2 in a deep-ocean—fall velocity and dissolution rate of solid CO2 in the ocean[R]. Chiba: Abiko Research Laboratory, 1991.
    [93]
    GUEVEL P, FRUMAN D H, MURRAY N. Conceptual design of an integrated solid CO2 penetrator marine disposal system[J]. Energy Conversion and Management, 1996, 37(6/7/8): 1053-1060.
    [94]
    彭斯干. 海水式碳捕集封存方法及装置: 中国, 201710137942.8[P]. 2017-03-09.

    PENG Si-gan. Seawater type carbon capture and storage method and device: China, 201710137942.8[P]. 2017-03-09. (in Chinese)
    [95]
    刘成波. 船舶碳捕集与封存技术的应用分析[J]. 船电技术, 2021, 41(10): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CDJI202110002.htm

    LIU Cheng-bo. Application analysis of ship carbon capture and storage technology[J]. Marine Electric and Electronic Engineering, 2021, 41(10): 6-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CDJI202110002.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (924) PDF downloads(173) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return