Citation: | CUI Jian-xun, YAO Jia, ZHAO Bo-yuan. Review on short-term traffic flow prediction methods based on deep learning[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 50-64. doi: 10.19818/j.cnki.1671-1637.2024.02.003 |
[1] |
DU W D, ZHANG Q Y, CHEN Y P, et al. An urban short-term traffic flow prediction model based on wavelet neural network with improved whale optimization algorithm[J]. Sustainable Cities and Society, 2021, 69: 102858. doi: 10.1016/j.scs.2021.102858
|
[2] |
史其信, 郑为中. 道路网短期交通流预测方法比较[J]. 交通运输工程学报, 2004, 4(4): 68-71, 83. http://transport.chd.edu.cn/article/id/200404017
SHI Qi-xin, ZHENG Wei-zhong. Short-term traffic flow prediction methods comparison of road networks[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4): 68-71, 83. (in Chinese) http://transport.chd.edu.cn/article/id/200404017
|
[3] |
王晓全, 邵春福, 尹超英, 等. 基于ARIMA-GARCH-M模型的短时交通流预测方法[J]. 北京交通大学学报, 2018, 42(4): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201804011.htm
WANG Xiao-quan, SHAO Chun-fu, YIN Chao-ying, et al. Short term traffic flow forecasting method based on ARIMA- GARCH-M model[J]. Journal of Beijing Jiaotong University, 2018, 42(4): 79-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT201804011.htm
|
[4] |
于泉, 姚宗含. 交通流预测的马尔科夫粒子滤波方法研究[J]. 交通运输系统工程与信息, 2019, 19(2): 209-215. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902030.htm
YU Quan, YAO Zong-han. Markov particle filter traffic flow prediction model[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 209-215. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902030.htm
|
[5] |
白伟华, 张传斌, 张塽旖, 等. 基于异常值识别卡尔曼滤波器的短期交通流预测[J]. 计算机应用研究, 2021, 38(3): 817-821. https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103034.htm
BAI Wei-hua, ZHANG Chuan-bin, ZHANG Shuang-yi, et al. O utlier-identified Kalman filter for short-term traffic flow forecasting[J]. Application Research of Computers, 2021, 38(3): 817-821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSYJ202103034.htm
|
[6] |
杨高飞, 徐睿, 秦鸣, 等. 基于ARMA和卡尔曼滤波的短时交通预测[J]. 郑州大学学报(工学版), 2017, 38(2): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY201702009.htm
YANG Gao-fei, XU Rui, QIN Ming, et al. Short-term traffic volume forecasting based on ARMA and Kalman filter[J]. Journal of Zhengzhou University (Engineering Science), 2017, 38(2): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY201702009.htm
|
[7] |
王翔, 陈小鸿, 杨祥妹. 基于K最近邻算法的高速公路短时行程时间预测[J]. 中国公路学报, 2015, 28(1): 102-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201501017.htm
WANG Xiang, CHEN Xiao-hong, YANG Xiang-mei. Short term prediction of expressway travel time based on K nearest neighbor algorithm[J]. China Journal of Highway and Transport, 2015, 28(1): 102-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201501017.htm
|
[8] |
LUO X L, LI D Y, ZHANG S R. Traffic flow prediction during the holidays based on DFT and SVR[J]. Journal of Sensors, 2019, 2019(10): 6461450.
|
[9] |
DONG C J, CUI A. Prediction models of short-term traffic flow based on neural network[J]. Advanced Materials Research, 2013, 671-674: 2908-2911. doi: 10.4028/www.scientific.net/AMR.671-674.2908
|
[10] |
LIU Zhong-bo, YANG Zhao-sheng, GAO Peng. Research on the short-term traffic flow prediction method based on BP neural networks[C]//IEEE. 2012 World Automation Congress. New York: IEEE, 2012: 94214.
|
[11] |
MA Xiao-lei, DAI Zhuang, HE Zheng-bing, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818. doi: 10.3390/s17040818
|
[12] |
邵春福, 薛松, 董春娇, 等. 考虑时空相关性的网络交通流短期预测[J]. 北京交通大学学报, 2021, 45(4): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202104006.htm
SHAO Chun-fu, XUE Song, DONG Chun-jiao, et al. Short-term traffic flow prediction considering temporal-spatial correlation on road network[J]. Journal of Beijing Jiaotong University, 2021, 45(4): 37-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BFJT202104006.htm
|
[13] |
LIU Qing-chao, LIU Tao, CAI Ying-feng, et al. Explanatory prediction of traffic congestion propagation mode: a self-attention based approach[J]. Physica A: Statistical Mechanics and its Applications, 2021, 573: 125940. doi: 10.1016/j.physa.2021.125940
|
[14] |
陈喜群, 周凌霄, 曹震. 基于图卷积网络的路网短时交通流预测研究[J]. 交通运输系统工程与信息, 2020, 20(4): 49-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004008.htm
CHEN Xi-qun, ZHOU Ling-xiao, CAO Zhen. Short-term network-wide traffic prediction based on graph convolutional network[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(4): 49-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004008.htm
|
[15] |
LYU Yi-sheng, DUAN Yan-jie, KANG Wen-wen, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
|
[16] |
GE Liang, LI Si-yu, WANG Ya-qiang, et al. Global Spatial-temporal graph convolutional network for urban traffic speed prediction[J]. Applied Sciences, 2020, 10(4): 1509. doi: 10.3390/app10041509
|
[17] |
LIN Hao-xing, JIA Wei-jia, SUN Yi-ping, et al. Spatial-temporal self-attention network for flow prediction[J]. arXiv, 2019, DOI: 10.48550/arXiv.1912.07663.
|
[18] |
GUO Sheng-nan, LIN You-fang, LI Shi-jie, et al. Deep spatial-temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926. doi: 10.1109/TITS.2019.2906365
|
[19] |
FU Rui, ZHANG Zuo, LI Li. Using LSTM and GRU neural network methods for traffic flow prediction[C]//IEEE. 31st Youth Academic Annual Conference of Chinese Association of Automation. New York: IEEE, 2016: 324-328.
|
[20] |
SHI Xing-jian, CHEN Zhuo-rong, WANG Hao, et al. Convolutional LSTM Network: a machine learning approach for precipitation nowcasting[C]//NIPS. 29th Annual Conference on Neural Information Processing Systems. San Diego: NIPS, 2015: 802-810.
|
[21] |
WANG Y, WU H, ZHANG J, et al. PredRNN: a recurrent neural network for spatiotemporal predictive learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2208-2225. doi: 10.1109/TPAMI.2022.3165153
|
[22] |
ZHANG Zheng-chao, LI Meng, LIN Xi, et al. Multistep speed prediction on traffic networks: a deep learning approach considering spatio-temporal dependencies[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 297-322. doi: 10.1016/j.trc.2019.05.039
|
[23] |
ANDREOLETTI D, TROIA S, MUSUMECI F, et al. Network traffic prediction based on diffusion convolutional recurrent neural networks[C]//IEEE. 2019 INFOCOM IEEE Conference on Computer Communications Workshops. New York: IEEE, 2019: 246-251.
|
[24] |
JIN Cang-hong, TAO Ruan, WU De-xing, et al. HetGAT: a heterogeneous graph attention network for freeway traffic speed prediction[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, DOI: 10.1007/s12652-020-02807-0.
|
[25] |
LIN Zhi-hui, LI Mao-mao, ZHENG Zhuo-bin, et al. Self-attention ConvLSTM for spatiotemporal prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11531-11538. doi: 10.1609/aaai.v34i07.6819
|
[26] |
CAI L, JANOWICZ K, MAI G C, et al. Traffic transformer: capturing the continuity and periodicity of time series for traffic forecasting[J]. Transactions in GIS, 2020, 24(3): 736-755. doi: 10.1111/tgis.12644
|
[27] |
刘静, 关伟. 交通流预测方法综述[J]. 公路交通科技, 2004, 21(3): 82-85. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200403022.htm
LIU Jing, GUAN Wei. A summary of traffic flow forecasting methods[J]. Journal of Highway and Transportation Research and Development, 2004, 21(3): 82-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200403022.htm
|
[28] |
王进, 史其信. 神经网络模型在短期交通流预测领域应用综述[J]. 河南科技大学学报(自然科学版), 2005, 26(2): 22-26. https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX200502008.htm
WANG Jin, SHI Qi-xin. Review of application of neural network based models in short-term traffic flow forecasting[J]. Journal of Henan University of Science and Technology (Natural Science), 2005, 26(2): 22-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LYGX200502008.htm
|
[29] |
李振龙, 张利国, 钱海峰. 基于非参数回归的短时交通流预测研究综述[J]. 交通运输工程与信息学报, 2008, 6(4): 34-39. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC200804009.htm
LI Zhen-long, ZHANG Li-guo, QIAN Hai-feng. Review of the short-term traffic flow forecasting based on the non-parametric regression[J]. Journal of Transportation Engineering and Information, 2008, 6(4): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC200804009.htm
|
[30] |
郭敏, 肖翔, 蓝金辉. 道路交通流短时预测方法综述[J]. 自动化技术与应用, 2009, 28(6): 8-9, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ200906005.htm
GUO Min, XIAO Xiang, LAN Jin-hui. A summary of the short-time traffic flow forecasting methods[J]. Techniques of Automation and Applications, 2009, 28(6): 8-9, 16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDHJ200906005.htm
|
[31] |
ZHU Jia-wei, HAN Xing, DENG Han-han, et al. KST-GCN: a knowledge-driven spatial-temporal graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15055-15065. doi: 10.1109/TITS.2021.3136287
|
[32] |
CUI Zhi-yong, KE Rui-min, PU Zi-yuan, et al. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values[J]. Transportation Research Part C: Emerging Technologies, 2020, 118: 102674. doi: 10.1016/j.trc.2020.102674
|
[33] |
PAN Zhe-yi, WANG Zhao-yuan, WANG Wei-feng, et al. Matrix factorization for spatio-temporal neural networks with applications to urban flow prediction[C]//ACM. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2683-2691.
|
[34] |
谷振宇, 陈聪, 郑家佳, 等. 基于时空图卷积循环神经网络的交通流预测[J]. 控制与决策, 2022, 37(3): 645-653. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202312008.htm
GU Zhen-yu, CHEN Cong, ZHENG Jia-jia, et al. Traffic flow prediction based on STG-CRNN[J]. Control and Decision, 2022, 37(3): 645-653. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202312008.htm
|
[35] |
CUI Z Y, HENRICKSON K, KE R M, et al. Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4883-4894. doi: 10.1109/TITS.2019.2950416
|
[36] |
HUANG Wen-hao, SONG Guo-jie, HONG Hai-kun, et al. Deep architecture for traffic flow prediction: deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5): 2191-2201. doi: 10.1109/TITS.2014.2311123
|
[37] |
HUANG Fei-hu, YI Pei-yu, WANG Jin-ce, et al. A dynamical spatial-temporal graph neural network for traffic demand prediction[J]. Information Sciences, 2022, 594: 286-304. doi: 10.1016/j.ins.2022.02.031
|
[38] |
LI Wei, WANG Xin, ZHANG Yi-wen, et al. Traffic flow prediction over muti-sensor data correlation with graph convolution network[J]. Neurocomputing, 2021, 427: 50-63. doi: 10.1016/j.neucom.2020.11.032
|
[39] |
CHEN Li, ZHENG Lin-jiang, YANG Jie, et al. Short-term traffic flow prediction: from the perspective of traffic flow decomposition[J]. Neurocomputing, 2020, 413, 444-456. doi: 10.1016/j.neucom.2020.07.009
|
[40] |
陈喜群, 曹震, 沈楼涛, 等. 融合路段传输模型和深度学习的城市路网短时交通流状态预测[J]. 中国公路学报, 2021, 34(12): 203-216. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112015.htm
CHEN Xi-qun, CAO Zhen, SHEN Lou-tao, et al. Short-term traffic-state prediction of urban road networks based on the fusion of a link-transmission model and deep learning[J]. China Journal of Highway and Transport, 2021, 34(12): 203-216. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112015.htm
|
[41] |
高华兵, 舒文迪, 刘志. 基于深度学习的城市快速路交通流预测方法[J]. 浙江工业大学学报, 2022, 50(4): 406-412, 463. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJGD202204007.htm
GAO Hua-bing, SHU Wen-di, LIU Zhi. Urban expressway traffic flow prediction method based on deep learning[J]. Journal of Zhejiang University of Technology, 2022, 50(4): 406-412, 463. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJGD202204007.htm
|
[42] |
GUO Sheng-nan, LIN You-fang, WAN Huai-yu, et al. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(11): 5415-5428. doi: 10.1109/TKDE.2021.3056502
|
[43] |
YE Ji-hua, XUE Sheng-jun, JIANG Ai-wen. Attention-based spatio-temporal graph convolutional network considering external factors for multi-step traffic flow prediction[J]. Digital Communications and Networks, 2022, 8: 343-350. doi: 10.1016/j.dcan.2021.09.007
|
[44] |
XU Yao-bin, LIU Wei-tang, JIANG Zhong-yi, et al. MAF-GNN: multi-adaptive spatiotemporal-flow graph neural network for traffic speed forecasting[J]. arXiv, 2021, DOI: 10.48550/arXiv.2108.03594.
|
[45] |
POLSON N G, SOKOLOV V O. Deep learning for short-term traffic flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2017, 79: 1-17. doi: 10.1016/j.trc.2017.02.024
|
[46] |
ZHANG Jun-bo, ZHENG Yu, SUN Jun-kai, et al. Flow prediction in spatio-temporal networks based on multitask deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(3): 468-478. doi: 10.1109/TKDE.2019.2891537
|
[47] |
ZHANG Jun-bo, YU Zheng, QI De-kang, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 2018, 259: 147-166. doi: 10.1016/j.artint.2018.03.002
|
[48] |
LIANG Y, OUYANG K, WANG Y, et al. Revisiting convolutional neural networks for citywide crowd flow analytics[C]//Springer. European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2020: 578-594.
|
[49] |
李磊, 张青苗, 赵军辉, 等. 基于改进CNN-LSTM组合模型的分时段短时交通流预测[J]. 应用科学学报, 2021, 39(2): 185-198. https://www.cnki.com.cn/Article/CJFDTOTAL-YYKX202102001.htm
LI Lei, ZHANG Qing-miao, ZHAO Jun-hui, et al. Short-term traffic flow prediction method of different periods based on improved CNN-LSTM[J]. Journal of Applied Sciences, 2021, 39(2): 185-198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYKX202102001.htm
|
[50] |
KE Rui-min, LI Wan, CUI Zhi-yong, et al. Two-stream multi-channel convolutional neural network for multi-lane traffic speed prediction considering traffic volume impact[J]. Transportation Research Record, 2020, 2674(4): 459-470. doi: 10.1177/0361198120911052
|
[51] |
ZOU Z, HAO P, LIN L, et al. Deep convolutional mesh RNN for urban traffic passenger flows prediction[C]//IEEE. 2018 SmartWorld/UIC/ATC/ScalCom/CBDCom/IoP/SCI. New York: IEEE, 2018: 1305-1310.
|
[52] |
WANG Yun-bo, ZHANG Jian-jin, ZHU Hong-yu, et al. Memory in memory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics[C]//IEEE. 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 9146-9154.
|
[53] |
WANG Yun-bo, GAO Zhi-feng, LONG Ming-sheng, et al. PredRNN + + : towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[C]//IMLS. 35th International Conference on Machine Learning. San Diego: IMLS, 2018: 8122-8131.
|
[54] |
ZHENG Hai-feng, LIN Feng, FENG Xin-xin, et al. A hybrid deep learning model with attention-based Conv-LSTM networks for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 6910-6920. doi: 10.1109/TITS.2020.2997352
|
[55] |
彭博, 唐聚, 蔡晓禹, 等. 基于3DCNN-DNN的高空视频交通状态预测[J]. 交通运输系统工程与信息, 2020, 20(3): 39-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003007.htm
PENG Bo, TANG Ju, CAI Xiao-yu, et al. 3DCNN-DNN based traffic status prediction from aerial videos[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 39-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202003007.htm
|
[56] |
YU Feng, WEI Dan, ZHANG Shu-ting, et al. 3D CNN-based accurate prediction for large-scale traffic flow[C]//IEEE. The 4th International Conference on Intelligent Transportation Engineering (ICITE). New York: IEEE, 2019: 99-103.
|
[57] |
CHEN Yi-bi, ZOU Xiao-feng, LI Ken-li, et al. Multiple local 3D CNNs for region-based prediction in smart cities[J]. Information Sciences, 2021, 542: 476-491. doi: 10.1016/j.ins.2020.06.026
|
[58] |
ZHANG Shuai-chao, ZHOU Ling-xiao, CHEN Xi-qun, et al. Network-wide traffic speed forecasting: 3D convolutional neural network with ensemble empirical mode decomposition[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(10): 1132-1147. doi: 10.1111/mice.12575
|
[59] |
UL ABIDEEN Z, SUN H L, YANG Z, et al. The deep 3D convolutional multi-branching spatial-temporal-based unit predicting citywide traffic flow[J]. Applied Sciences, 2020, 10(21): 7778. doi: 10.3390/app10217778
|
[60] |
CEN C, LI K L, TEO S G, et al. Exploiting spatio-temporal correlations with multiple 3D convolutional neural networks for citywide vehicle flow prediction[C]//IEEE. 2018 IEEE International Conference on Data Mining. New York: IEEE, 2018: 893-898.
|
[61] |
GUO Sheng-nan, LIN You-fang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//AAAI. The Thirty-Third AAAI Conference on Artificial Intelligence. Washington DC: AAAI, 2019: 922-929.
|
[62] |
CHEN Xu, ZHANG Yuan-xing, DU Lun, et al. TSSRGCN: temporal spectral spatial retrieval graph convolutional network for traffic flow forecasting[C]//IEEE. 2020 IEEE International Conference on Data Mining. New York: IEEE, 2020: 954-959.
|
[63] |
WU Zong-han, PAN Shi-rui, LONG Guo-dong, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//AAAI. Proceedings of Twenty-Eighth International Joint Conference on Artificial Intelligence IJCAI-19. Washington DC: AAAI, 2019: 1907-1913.
|
[64] |
BAI Jian-dong, ZHU Jia-wei, SONG Yu-jiao, et al. A3T-GCN: attention temporal graph convolutional network for traffic forecasting[J]. ISPRS International Journal of Geo-Information, 2021, 10(7): 485-496. doi: 10.3390/ijgi10070485
|
[65] |
TIAN Yan-ling, ZHANG Qie-shi, REN Zi-liang, et al. Multi-scale dilated convolution network based depth estimation in intelligent transportation systems[J]. IEEE Access, 2019, 7(99): 185179-185188.
|
[66] |
LYU Ming-qi, HONG Zhao-xiong, CHEN Ling, et al. Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3337-3348. doi: 10.1109/TITS.2020.2983763
|
[67] |
ZHANG Jian-ni, SHI Xing-jian, XIE Jun-juan, et al. GaAN: gated attention networks for learning on large and spatiotemporal graphs[J]. arXiv, 2018, DOI: 10.48550/arXiv.1803.07294.
|
[68] |
CUI Zhi-yong, LIN Long-fei, PU Zi-yuan, et al. Graph Markov network for traffic forecasting with missing data[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102671. doi: 10.1016/j.trc.2020.102671
|
[69] |
PARK C, LEE C, BAHNG H, et al. ST-GRAT: a novel spatio-temporal graph attention networks for accurately forecasting dynamically changing road speed[C]//ACM. 9th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1215-1224.
|
[70] |
SONG Chao, LIN You-fang, GUO Sheng-nan, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[C]//AAAI. The Thirty-Fourth AAAI Conference on Artificial Intelligence. Washington DC: AAAI, 2020: 914-921.
|
[71] |
SUN Jun-kai, ZHANG Jun-bo, LI Qiao-fei, et al. Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2348-2359. doi: 10.1109/TKDE.2020.3008774
|
[72] |
TANG Shan-shan, LI Bo, YU Hai-jun. ChebNet: efficient and stable constructions of deep neural networks with rectified power units using Chebyshev approximations[J]. arXiv, 2019, DOI: 10.48550/arXiv.1911.05467.
|
[73] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//ICLR. 5th International Conference on Learning Representations. Washington DC: ICLR, 2017: 1-14.
|
[74] |
LI Y G, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[C]//ICLR. 6th International Conference on Learning Representations. Washington DC: ICLR, 2018: 1-16.
|
[75] |
VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//ICLR. 6th International Conference on Learning Representations. Washington DC: ICLR, 2018: 1-12.
|
[76] |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//NIPS. 31st Conference on Neural Information Processing Systems. San Diego: NIPS, 2017: 1-11.
|
[77] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv, 2017, DOI: 10.48550/arXiv.1706.03762.
|
[78] |
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]//NIPS. 34th Conference on Neural Information Processing Systems. San Diego: NIPS, 2020: 1-25.
|
[79] |
ARNAB A, DEHGHANI M, HEIGOLD G, et al. ViViT: a video vision transformer[C]//IEEE. 2021 IEEE/CVF International Conference on Computer Vision. New York: IEEE, 2021: 6816-6826.
|
[80] |
LI Y S, BACIU G. SAPCGA N: Self-Attention based generative adversarial network for point clouds[C]//IEEE. 19th IEEE International Conference on Cognitive Informatics and Cognitive Computing. New York: IEEE, 2020: 52-59.
|
[81] |
ZHANG Kun-peng, JIA Ning, ZHENG Liang, et al. A novel generative adversarial network for estimation of trip travel time distribution with trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2019, 108: 223-244. doi: 10.1016/j.trc.2019.09.019
|