Citation: | WANG Pu, ZHAO Zhen-hua, GE Jing, MA Jun-qi, WANG Shu-guo, LIU Xiao-han. Rationality analysis and optimization of guard rail interval and wing rail interval limits at turnouts[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 102-111. doi: 10.19818/j.cnki.1671-1637.2024.02.006 |
[1] |
GONG Kai, XIANG Jun, YU Cui-ying, et al. Analysis on freight train derailment course induced by overspeed in curve[J]. Journal of Southeast University (Natural Science Edition), 2015, 45(1): 172-177. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201501031.htm
|
[2] |
GONG Kai, LIU Lin-ya, XIANG Jun, et al. Calculation of passenger train derailment course induced by overspeeds in curve[J]. Journal of Central South University (Science and Technology), 2020, 51(9): 2673-2680. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202009033.htm
|
[3] |
SI Dao-lin, WANG Shu-guo, WANG Meng, et al. Derailment mechanism and influence factors on number 6 symmetric switches[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 300-305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202102011.htm
|
[4] |
LAI Jun, XU Jing-mang, WANG Ping, et al. Numerical investigation of dynamic derailment behavior of railway vehicle when passing through a turnout[J]. Engineering Failure Analysis, 2021, 121: 105132. doi: 10.1016/j.engfailanal.2020.105132
|
[5] |
QIAO Yu, XU Yu-de, SUN Xiao-hui, et al. Influence of marshalling mode on derailment coefficient at the turnout of hump yard[J]. Journal of East China Jiaotong University, 2018, 35(5): 9-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HDJT201805002.htm
|
[6] |
ZHU Yao-bin, SUN Xiao-nan, CHEN Fu-bin. Study on the influences of hump horizontal and vertical section conditions on derailment safety and its corresponding treatment scheme[J]. China Railway, 2015(8): 29-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201508007.htm
|
[7] |
WANG Ping, WANG Jian, MA Xiao-chuan, et al. Theoretical 3D model for quasi-static critical derailment coefficient of railway vehicles and a simplified formula[J]. Mathematical Problems in Engineering, 2018, 2018: 7910753.
|
[8] |
WANG Jian. Study on derailment theory of switch aera in small number turnouts based on wheel-rail relationship[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
|
[9] |
WANG Ping, CHEN Rong, XU Jing-mang, et al. Theories and engineering practices of high-speed railway turnout system: survey and review[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 357-372. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602016.htm
|
[10] |
YANG Tong, DONG Yu. Prediction algorithm of derailment coefficient in turnout area based on multi-sensor data fusion[J]. Journal of Railway Science and Engineering, 2020, 17(8): 1883-1892. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202008001.htm
|
[11] |
LI Chao, ZHAO Lin-hai. A railway turnout closeness state monitoring method based on the switch gap images[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(4): 214-229. doi: 10.1109/MITS.2021.3053036
|
[12] |
GONG Kai, XIANG Jun, MAO Jian-hong, et al. Calculation of freight train derailment course induced by earthquake[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(3): 664-670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201603036.htm
|
[13] |
WANG Kai-yun, WANG Shao-lin, YANG Jiu-chuan, et al. Progress in study on wheel/rail dynamic safety and derailment of railway during an earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(6): 82-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201206011.htm
|
[14] |
ZHOU Zhi-hui, ZENG Qing-yuan. Study on the analysis theory of train derailment and the limit value of bridge lateral rigidity for derailment control[J]. China Railway Science, 2009, 30(1): 136-138. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200901026.htm
|
[15] |
XIAO Xin-biao, JIN Xue-song, WEN Ze-feng. Influence of rail fastener failure on vehicle dynamic derailment[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 10-15. (in Chinese) https://transport.chd.edu.cn/article/id/200601002
|
[16] |
ZHOU Li, SHEN Zhi-yun. Dynamic analysis of a high-speed train operating on a curved track with failed fasteners[J]. Journal of Zhejiang University—Science A, 2013, 14(6): 447-458. doi: 10.1631/jzus.A1200321
|
[17] |
ZHANG Peng-fei, YANG Ao-chuang, ZHANG Qing-huan. Research and development of new high speed turnout structure and safety analysis while train passing through turnout[J]. Railway Engineering, 2024, 64(1): 34-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202401006.htm
|
[18] |
MA Xiao-chuan, WANG Ping, XU Jin-hui. et al. Effect of rail straightening irregularity on vertical dynamic characteristics of vehicle-turnout coupling system[J]. Journal of Central South University (Science and Technology), 2017, 48(7): 1942-1950. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201707035.htm
|
[19] |
SI Dao-lin, YANG Dong-sheng, WANG Shu-guo, et al. Analysis on dynamic characteristics of high speed turnout frog structure in irregularity state[J]. Railway Engineering, 2018, 58(1): 67-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ201801016.htm
|
[20] |
ZHOU Peng-xi, HUANG Yun-hua, DING Jun-jun, et al. Research on the influence of guard rail on the operation safety of rack railway vehicles under earthquake[J]. Machinery, 2023, 50(9): 31-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MECH202309005.htm
|
[21] |
GUO Wei. Structural design and optimization of the guardrail for train-to-train collision test bench[D]. Changsha: Central South University, 2022. (in Chinese)
|
[22] |
LIU Pei, CHEN Wei-guo, ZHANG Yao. Performance analysis of railway vehicle-ballastless track guard track based on BIM[J]. Railway Engineering, 2021, 61(9): 138-143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ202109029.htm
|
[23] |
LIU Teng, ZHOU Xiong-fei, WANG Cheng-quan, et al. Wheel-rail interaction mechanism and derailment suppression technology for train collision accidents[J]. Acta Armamentarii, 2023, 44(S1): 67-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO2023S1007.htm
|
[24] |
SUN Li-xia, YAO Jian-wei, CHENG Di, et al. Critical state evaluation method for dynamic derailment of high speed vehicle[J]. China Railway Science, 2020, 41(2): 113-122. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202002014.htm
|
[25] |
SUZUKI H. Bogie with anti-derailment device[J]. Foreign Railway Locomotive and Motor Car, 2023(4): 37-39, 48. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWMJ202304008.htm
|
[26] |
WENG Tao-tao. Wear analysis and grinding profile optimization design of high-speed turnout[D]. Nanchang: East China Jiaotong University, 2023. (in Chinese)
|
[27] |
QIAN Xin. Optimal profile design and adaptability analysis of high-speed turnout switch area[D]. Nanchang: East China Jiaotong University, 2023. (in Chinese)
|
[28] |
LIN Feng-tao, WENG Tao-tao, YANG Yang, et al. Dynamic analysis of wear wheel in turnout frog area and influence of friction coefficient[J]. Journal of Railway Science and Engineering, 2023, 20(4): 1316-1325. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202304018.htm
|
[29] |
WANG Shu-guo, WANG Pu, GE Jing, et al. Study on wear characteristics and management limit of switch rail in high-speed turnout[J]. China Railway Science, 2022, 43(1): 9-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202201002.htm
|
[30] |
WANG Pu, WANG Shu-guo, ZHAO Zhen-hua. Mechanism of derailment at the guardrail position of turnout and a reasonable guardrail interval limit[J]. Applied Sciences, 2022, 12(17): 8496. doi: 10.3390/app12178496
|