Citation: | GUO Bing-bin, LUO Zhi-xiang, XIAO Qian, CHENG Yu-qi, YANG Yi-hang, ZHU En-hao. Analysis of vehicle vibration transfer characteristics based on flexible vehicle system and OTPA method[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 179-192. doi: 10.19818/j.cnki.1671-1637.2024.02.012 |
[1] |
CHAAR N, BERG M. Vehicle-track dynamic simulations of a locomotive considering wheelset structural flexibility and comparison with measurements[J]. Journal of Rail and Rapid Transit, 2005, 219(4): 225-238. doi: 10.1243/095440905X8907
|
[2] |
REN Zun-song, LIU Zhi-ming. Vibration and frequency domain characteristics of high speed EMU[J]. Journal of Mechanical Engineering, 2013, 49(16): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316002.htm
|
[3] |
FROHLING R D. Low frequency dynamic vehicle/track interaction: modelling and simulation[J]. Vehicle System Dynamics, 1998, 29(S1): 30-46.
|
[4] |
SZOLC T. Medium frequency dynamic investigation of the railway wheelset-track system using a discrete-continuous model[J]. Archive of Applied Mechanics, 1998, 68(1): 30-45. doi: 10.1007/s004190050144
|
[5] |
POPP K, KRUSE H, KAISER I. Vehicle-track dynamics in the mid-frequency range[J]. Vehicle System Dynamics, 1999, 31(5/6): 423-464.
|
[6] |
NAKAGAWA C, SHIMAMUNE R, WATANABE K, et al. Fundamental study on the effect of high-frequency vibration in the vertical and lateral directions on ride comfort[J]. Quarterly Report of RTRI, 2010, 51(2): 101-104. doi: 10.2219/rtriqr.51.101
|
[7] |
BAO Xue-hai, CHI Mao-ru, LU Yao-hui, et al. Research on vehicle system dynamics model of rigid-flexible mixture based on substructure method[J]. Railway Locomotive and Car, 2009, 29(3): 8-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200903002.htm
|
[8] |
CARVALHO V N, RENDE B F R, SILVA A D G, et al. Robust balancing approach for rotating machines based on fuzzy logic[J]. Journal of Vibration and Acoustics, 2018, 140(5): 1-9.
|
[9] |
BAEZA L, FAYOS J, RODA A, et al. High frequency railway vehicle-track dynamics through flexible rotating wheelsets[J]. Vehicle System Dynamics, 2008, 46(7): 647-659. doi: 10.1080/00423110701656148
|
[10] |
WEI Wei, ZHAO Xing-gang. Analysis on vibration and noise of vehicle wheel[J]. Noise and Vibration Control, 2007, 27(4): 99-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK200704029.htm
|
[11] |
LIU Yu-tao, LI Cheng-hui, QI Wei, et al. Simulation model for medium and high frequency vibration of wheelset[J]. China Railway Science, 2016, 37(3): 82-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201603013.htm
|
[12] |
REN Zun-song, SUN Shou-guang, LIU Zhi-ming. Dynamic simulation of the passenger cars with elastic bogies[J]. Journal of the China Railway Society, 2004, 26(4): 31-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404007.htm
|
[13] |
LIU Jian, SHI Guang-tian. Study on effects of elastic bogie stiffness on vehicle system dynamics[J]. Mechanical Research and Application, 2016, 29(1): 117-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ201601039.htm
|
[14] |
XIAO Qian, LUO Jia-wen, ZHOU Sheng-tong, et al. Multiobjective optimization design for suspension parameters of rail vehicle bogie considering elastic carbody[J]. China Railway Science, 2021, 42(2): 125-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202102014.htm
|
[15] |
GUO Lin-sheng, WEN Yong-peng, SHANG Hui-lin, et al. Vertical vibration characteristics of urban rail elastic vehicle body with under-vehicle equipment[J]. Journal of Vibration and Shock, 2019, 38(21): 97-103, 125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201921015.htm
|
[16] |
WANG Shan-shan, REN Zun-song, SUN Shou-guang, et al. Vibration and transmission characteristics of one elastic high-speed vehicle system[J]. Journal of Vibration Engineering, 2016, 29(1): 148-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201601019.htm
|
[17] |
SHI Huai-long, QU Sheng, ZHANG Da-fu, et al. Dynamic response performance analysis of high-speed trains on track[J]. Journal of the China Railway Society, 2019, 41(10): 30-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201910007.htm
|
[18] |
XU Ning, REN Zun-song, XUE Rui, et al. Study on power flow transfer characteristics with different vehicle/track system dynamics models[J]. Journal of the China Railway Society, 2019, 41(5): 35-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201905007.htm
|
[19] |
DE SITTER G, DEVRIENDT C, GUILLAUME P, et al. Operational transfer path analysis[J]. Mechanical Systems and Signal Processing, 2010, 24(2): 416-431. doi: 10.1016/j.ymssp.2009.07.011
|
[20] |
DE KLERK D, OSSIPOV A. Operational transfer path analysis: theory, guidelines and tire noise application[J]. Mechanical Systems and Signal Processing, 2010, 24(7): 1950-1962. doi: 10.1016/j.ymssp.2010.05.009
|
[21] |
CHU Zhi-gang, XIONG Min, YANG Yang, et al. Time-domain transfer path analysis of automobile interior noise[J]. Journal of Vibration and Shock, 2015, 34(17): 161-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201517028.htm
|
[22] |
GUO Rong, QIU Yan, FANG Huai-qing, et al. Advance in studying on transfer path analysis methods in frequency domain[J]. Journal of Vibration and Shock, 2013, 32(13): 49-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201313012.htm
|
[23] |
WU Xian-jun, LYU Ya-dong, SUI Fu-sheng. Basic theory of operational transfer path analysis and its application[J]. Noise and Vibration Control, 2014, 34(1): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201401007.htm
|
[24] |
XIAN Min, ZHAO Yang-yang, CHEN Cai-hui. Idle noise analysis based on OTPA method[J]. China Automobile, 2021(1): 4-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQGZ202101002.htm
|
[25] |
LIANG Rui, GU Yan. Indoor passby contribution analysis research based on OTPA[J]. China Automobile, 2019(11): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQGZ201911013.htm
|
[26] |
CHEN Ke, JIANG Shao-wei, ZHANG Xiao-dong. Analysis of noise source contribution in vehicle based on operational transfer path analysis method[J]. Journal of Shenyang University of Technology, 2021, 43(6): 652-661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY202106010.htm
|
[27] |
WANG Bin-xing, ZHENG Si-fa, LI Chuan-bing, et al. Effect of elastic framework on vibration characteristics of vehicle[J]. Vibration, Test and Diagnosis, 2014, 34(4): 693-698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201404017.htm
|
[28] |
LIU Chang-li, XIA Chun-ming, ZHENG Jian-rong, et al. On the bifurcation of periodic motion of rotor system with rub-impact and oil fault[J]. Journal of Vibration and Shock, 2008, 27(5): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200805025.htm
|
[29] |
RAMIREZ J P, NIJMEIJER H. The poincaré method: a powerful tool for analyzing synchronization of coupled oscillators[J]. Indagationes Mathematicae, 2015, 27(5): 1127-1146.
|
[30] |
LIU Ming-jie. The dynamics principle of fixed-interface model synthesis method[J]. Journal of Zhejiang University, 1985(6): 189-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC198506018.htm
|
[31] |
AN Fang. Research on the theoretical analysis of fixed-interface modal synthesis techiniques[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese)
|
[32] |
ZHOU Ya-bo, CHI Mao-ru, CAI Wu-bin, et al. Causes analysis of abnormal vibration and noise in railway vehicles[J]. Journal of Mechanical Engineering, 2021, 57(4): 148-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202104017.htm
|