Volume 24 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
GUO Bing-bin, LUO Zhi-xiang, XIAO Qian, CHENG Yu-qi, YANG Yi-hang, ZHU En-hao. Analysis of vehicle vibration transfer characteristics based on flexible vehicle system and OTPA method[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 179-192. doi: 10.19818/j.cnki.1671-1637.2024.02.012
Citation: GUO Bing-bin, LUO Zhi-xiang, XIAO Qian, CHENG Yu-qi, YANG Yi-hang, ZHU En-hao. Analysis of vehicle vibration transfer characteristics based on flexible vehicle system and OTPA method[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 179-192. doi: 10.19818/j.cnki.1671-1637.2024.02.012

Analysis of vehicle vibration transfer characteristics based on flexible vehicle system and OTPA method

doi: 10.19818/j.cnki.1671-1637.2024.02.012
Funds:

National Natural Science Foundation of China 52372327

National Natural Science Foundation of China 51975210

Open Poject of State Key Laboratory of Heavy Duty AC Drive Electric Locomotive Systems Integration 13221430000480

More Information
  • Author Bio:

    GUO Bing-bin(1989-), male, senior engineer, PhD, guobb1131@163.com

    XIAO Qian(1977-), male, professor, PhD, jxraiph@foxmail.com

  • Received Date: 2023-10-23
    Available Online: 2024-05-16
  • Publish Date: 2024-04-30
  • In order to accurately analyze the vibration characteristics and transfer rules of rail vehicles in the wide frequency domain, a scheme for operational transfer path analysis (OTPA) based on a dynamics simulation model of a flexible vehicle system was proposed. A dynamics model of a flexible vehicle system including flexible wheelsets, frame, and vehicle body, as well as a rigid body model with identical structural parameters was established. The vibration characteristics of the wheelset, frame, and vehicle body were studied from the perspective of time domain. The simulation results were compared with the measured data to explore the effect of flexible treatment on vehicle vibration. The attenuation law of vibration energy was obtained. Meanwhile, the vibration characteristics of the flexible vehicle system under the excitation of measured vertical irregularities of steel rails were investigated from the perspective of the frequency domain. The OTPA method was used to simulate and analyze the main transfer path of vertical vibration in the bottom-up vibration transfer process of the vehicle system from wheelset to frame and vehicle body under complex condition of vertical irregularities of steel rails combined with wheel polygon. Research results indicate that the flexible treatment method of the vehicle system has a significant impact on vehicle vibration. Compared with the rigid body model, the vibration accelerations of wheelsets, frame, and vehicle body in the flexible vehicle system model are closer to measured values in the mid-to-low frequency range. The maximum vibration amplitudes of axle box, frame, and vehicle body are 250-450, 30-40, and 3-4 m·s-2, respectively. The vibration amplitude attenuates by an order of magnitude from the wheelsets to the frame and vehicle body. The sperling index of the flexible vehicle system model is greater than that of the rigid body model, and the trend becomes more obvious as the speed increases. The impact of a vehicle's flexible vibration on the operational performance increases with the increase in speed. Under complex working conditions, the vibration of the vehicle system is mainly transferred to the frame through a series of steel springs, and then transferred to the interior floor through air springs and traction rods.

     

  • loading
  • [1]
    CHAAR N, BERG M. Vehicle-track dynamic simulations of a locomotive considering wheelset structural flexibility and comparison with measurements[J]. Journal of Rail and Rapid Transit, 2005, 219(4): 225-238. doi: 10.1243/095440905X8907
    [2]
    REN Zun-song, LIU Zhi-ming. Vibration and frequency domain characteristics of high speed EMU[J]. Journal of Mechanical Engineering, 2013, 49(16): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201316002.htm
    [3]
    FROHLING R D. Low frequency dynamic vehicle/track interaction: modelling and simulation[J]. Vehicle System Dynamics, 1998, 29(S1): 30-46.
    [4]
    SZOLC T. Medium frequency dynamic investigation of the railway wheelset-track system using a discrete-continuous model[J]. Archive of Applied Mechanics, 1998, 68(1): 30-45. doi: 10.1007/s004190050144
    [5]
    POPP K, KRUSE H, KAISER I. Vehicle-track dynamics in the mid-frequency range[J]. Vehicle System Dynamics, 1999, 31(5/6): 423-464.
    [6]
    NAKAGAWA C, SHIMAMUNE R, WATANABE K, et al. Fundamental study on the effect of high-frequency vibration in the vertical and lateral directions on ride comfort[J]. Quarterly Report of RTRI, 2010, 51(2): 101-104. doi: 10.2219/rtriqr.51.101
    [7]
    BAO Xue-hai, CHI Mao-ru, LU Yao-hui, et al. Research on vehicle system dynamics model of rigid-flexible mixture based on substructure method[J]. Railway Locomotive and Car, 2009, 29(3): 8-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC200903002.htm
    [8]
    CARVALHO V N, RENDE B F R, SILVA A D G, et al. Robust balancing approach for rotating machines based on fuzzy logic[J]. Journal of Vibration and Acoustics, 2018, 140(5): 1-9.
    [9]
    BAEZA L, FAYOS J, RODA A, et al. High frequency railway vehicle-track dynamics through flexible rotating wheelsets[J]. Vehicle System Dynamics, 2008, 46(7): 647-659. doi: 10.1080/00423110701656148
    [10]
    WEI Wei, ZHAO Xing-gang. Analysis on vibration and noise of vehicle wheel[J]. Noise and Vibration Control, 2007, 27(4): 99-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK200704029.htm
    [11]
    LIU Yu-tao, LI Cheng-hui, QI Wei, et al. Simulation model for medium and high frequency vibration of wheelset[J]. China Railway Science, 2016, 37(3): 82-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201603013.htm
    [12]
    REN Zun-song, SUN Shou-guang, LIU Zhi-ming. Dynamic simulation of the passenger cars with elastic bogies[J]. Journal of the China Railway Society, 2004, 26(4): 31-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404007.htm
    [13]
    LIU Jian, SHI Guang-tian. Study on effects of elastic bogie stiffness on vehicle system dynamics[J]. Mechanical Research and Application, 2016, 29(1): 117-121. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXYJ201601039.htm
    [14]
    XIAO Qian, LUO Jia-wen, ZHOU Sheng-tong, et al. Multiobjective optimization design for suspension parameters of rail vehicle bogie considering elastic carbody[J]. China Railway Science, 2021, 42(2): 125-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202102014.htm
    [15]
    GUO Lin-sheng, WEN Yong-peng, SHANG Hui-lin, et al. Vertical vibration characteristics of urban rail elastic vehicle body with under-vehicle equipment[J]. Journal of Vibration and Shock, 2019, 38(21): 97-103, 125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201921015.htm
    [16]
    WANG Shan-shan, REN Zun-song, SUN Shou-guang, et al. Vibration and transmission characteristics of one elastic high-speed vehicle system[J]. Journal of Vibration Engineering, 2016, 29(1): 148-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201601019.htm
    [17]
    SHI Huai-long, QU Sheng, ZHANG Da-fu, et al. Dynamic response performance analysis of high-speed trains on track[J]. Journal of the China Railway Society, 2019, 41(10): 30-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201910007.htm
    [18]
    XU Ning, REN Zun-song, XUE Rui, et al. Study on power flow transfer characteristics with different vehicle/track system dynamics models[J]. Journal of the China Railway Society, 2019, 41(5): 35-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201905007.htm
    [19]
    DE SITTER G, DEVRIENDT C, GUILLAUME P, et al. Operational transfer path analysis[J]. Mechanical Systems and Signal Processing, 2010, 24(2): 416-431. doi: 10.1016/j.ymssp.2009.07.011
    [20]
    DE KLERK D, OSSIPOV A. Operational transfer path analysis: theory, guidelines and tire noise application[J]. Mechanical Systems and Signal Processing, 2010, 24(7): 1950-1962. doi: 10.1016/j.ymssp.2010.05.009
    [21]
    CHU Zhi-gang, XIONG Min, YANG Yang, et al. Time-domain transfer path analysis of automobile interior noise[J]. Journal of Vibration and Shock, 2015, 34(17): 161-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201517028.htm
    [22]
    GUO Rong, QIU Yan, FANG Huai-qing, et al. Advance in studying on transfer path analysis methods in frequency domain[J]. Journal of Vibration and Shock, 2013, 32(13): 49-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201313012.htm
    [23]
    WU Xian-jun, LYU Ya-dong, SUI Fu-sheng. Basic theory of operational transfer path analysis and its application[J]. Noise and Vibration Control, 2014, 34(1): 28-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201401007.htm
    [24]
    XIAN Min, ZHAO Yang-yang, CHEN Cai-hui. Idle noise analysis based on OTPA method[J]. China Automobile, 2021(1): 4-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQGZ202101002.htm
    [25]
    LIANG Rui, GU Yan. Indoor passby contribution analysis research based on OTPA[J]. China Automobile, 2019(11): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQGZ201911013.htm
    [26]
    CHEN Ke, JIANG Shao-wei, ZHANG Xiao-dong. Analysis of noise source contribution in vehicle based on operational transfer path analysis method[J]. Journal of Shenyang University of Technology, 2021, 43(6): 652-661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYGY202106010.htm
    [27]
    WANG Bin-xing, ZHENG Si-fa, LI Chuan-bing, et al. Effect of elastic framework on vibration characteristics of vehicle[J]. Vibration, Test and Diagnosis, 2014, 34(4): 693-698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201404017.htm
    [28]
    LIU Chang-li, XIA Chun-ming, ZHENG Jian-rong, et al. On the bifurcation of periodic motion of rotor system with rub-impact and oil fault[J]. Journal of Vibration and Shock, 2008, 27(5): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ200805025.htm
    [29]
    RAMIREZ J P, NIJMEIJER H. The poincaré method: a powerful tool for analyzing synchronization of coupled oscillators[J]. Indagationes Mathematicae, 2015, 27(5): 1127-1146.
    [30]
    LIU Ming-jie. The dynamics principle of fixed-interface model synthesis method[J]. Journal of Zhejiang University, 1985(6): 189-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC198506018.htm
    [31]
    AN Fang. Research on the theoretical analysis of fixed-interface modal synthesis techiniques[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese)
    [32]
    ZHOU Ya-bo, CHI Mao-ru, CAI Wu-bin, et al. Causes analysis of abnormal vibration and noise in railway vehicles[J]. Journal of Mechanical Engineering, 2021, 57(4): 148-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202104017.htm

Catalog

    Article Metrics

    Article views (418) PDF downloads(36) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return