Citation: | GUAN Jin-chao, DING Ling, YANG Xu, LIU Peng-fei, WANG Hai-nian. Pavement surface distress detection in complex scenarios driven by multi-dimensional image fusion[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 154-170. doi: 10.19818/j.cnki.1671-1637.2024.03.010 |
[1] |
中华人民共和国交通运输部. 2021年交通运输行业发展统计公报[R]. 北京: 中华人民共和国交通运输部, 2022.
Ministry of Transport of the People's Republic of China. Statistical bulletin on transportation industry development in 2022[R]. Beijing: Ministry of Transport of the People's Republic of China, 2022. (in Chinese)
|
[2] |
YANG Xu, GUAN Jin-chao, DING Ling, et al. Research and applications of artificial neural network in pavement engineering: a state-of-the-art review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(6): 1000-1021. doi: 10.1016/j.jtte.2021.03.005
|
[3] |
徐志刚, 车艳丽, 李金龙, 等. 路面破损图像自动处理技术研究进展[J]. 交通运输工程学报, 2019, 19(1): 172-190. doi: 10.3969/j.issn.1671-1637.2019.01.017
XU Zhi-gang, CHE Yan-li, LI Jin-long, et al. Research progress on automatic image processing technology for pavement distress[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 172-190. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.01.017
|
[4] |
ZHANG Ce, NATEGHINIA E, MIRANDA-MORENO L F, et al. Pavement distress detection using convolutional neural network (CNN): a case study in Montreal, Canada[J]. International Journal of Transportation Science and Technology, 2022, 11(2): 298-309. doi: 10.1016/j.ijtst.2021.04.008
|
[5] |
李清泉, 胡庆武. 基于图像自动匀光的路面裂缝图像分析方法[J]. 公路交通科技, 2010, 27(4): 1-5, 27. doi: 10.3969/j.issn.1002-0268.2010.04.001
LI Qing-quan, HU Qing-wu. A pavement crack image analysis approach based on automatic image dodging[J]. Journal of Highway and Transportation Research and Development, 2010, 27(4): 1-5, 27. (in Chinese) doi: 10.3969/j.issn.1002-0268.2010.04.001
|
[6] |
孙朝云, 赵海伟, 李伟, 等. 基于双相扫描检测的路面三维裂缝识别方法[J]. 中国公路学报, 2015, 28(2): 26-32. doi: 10.3969/j.issn.1001-7372.2015.02.004
SUN Zhao-yun, ZHAO Hai-wei, LI Wei, et al. 3D pavement crack identification method based on dual-phase scanning detection[J]. China Journal of Highway and Transport, 2015, 28(2): 26-32. (in Chinese) doi: 10.3969/j.issn.1001-7372.2015.02.004
|
[7] |
JO Y, RYU S K, KIM Y R. Pothole detection based on the features of intensity and motion[J]. Transportation Research Record, 2016, 2595(1): 18-28. doi: 10.3141/2595-03
|
[8] |
SOLLAZZO G, WANG K C P, BOSURGI G, et al. Hybrid procedure for automated detection of cracking with 3D pavement data[J]. Journal of Computing in Civil Engineering, 2016, 30(6): 04016032. doi: 10.1061/(ASCE)CP.1943-5487.0000597
|
[9] |
尹冠生, 高建国, 史明辉, 等. 图像分块下的隧道裂缝识别方法[J]. 交通运输工程学报, 2022, 22(2): 148-159. doi: 10.19818/j.cnki.1671-1637.2022.02.011
YIN Guan-sheng, GAO Jian-guo, SHI Ming-hui, et al. Tunnel crack recognition method under image block[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 148-159. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.02.011
|
[10] |
PARK S, BANG S, KIM H, et al. Patch-based crack detection in black box images using convolutional neural networks[J]. Journal of Computing in Civil Engineering, 2019, 33(3): 04019017. doi: 10.1061/(ASCE)CP.1943-5487.0000831
|
[11] |
HUYAN Ju, LI Wei, TIGHE S, et al. Detection of sealed and unsealed cracks with complex backgrounds using deep convolutional neural network[J]. Automation in Construction, 2019, 107: 102946. doi: 10.1016/j.autcon.2019.102946
|
[12] |
张志华, 邓砚学, 张新秀. 基于改进SegNet的沥青路面病害提取与分类方法[J]. 交通信息与安全, 2022, 40(3): 127-135. doi: 10.3963/j.jssn.1674-4861.2022.03.013
ZHANG Zhi-hua, DENG Yan-xue, ZHANG Xin-xiu. A method for detecting and differentiating asphalt pavement distress based on an improved SegNet algorithm[J]. Journal of Transport Information and Safety, 2022, 40(3): 127-135. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.013
|
[13] |
YANG Fan, ZHANG Lei, YU Si-jia, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1525-1535. doi: 10.1109/TITS.2019.2910595
|
[14] |
TONG Zheng, YUAN Dong-dong, GAO Jie, et al. Pavement defect detection with fully convolutional network and an uncertainty framework[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(8): 832-849. doi: 10.1111/mice.12533
|
[15] |
HUYAN Ju, LI Wei, TIGHE S, et al. CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection[J]. Structural Control and Health Monitoring, 2020, 27(8): e2551.
|
[16] |
CHEN Han-shen, LIN Hui-ping, YAO Ming-hai. Improving the efficiency of encoder-decoder architecture for pixel-level crack detection[J]. IEEE Access, 2019, 7: 186657-186670. doi: 10.1109/ACCESS.2019.2961375
|
[17] |
MATHAVAN S, KAMAL K, RAHMAN M. A review of three-dimensional imaging technologies for pavement distress detection and measurements[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2353-2362. doi: 10.1109/TITS.2015.2428655
|
[18] |
CAO Wen-ming, LIU Qi-fan, HE Zhi-quan. Review of pavement defect detection methods[J]. IEEE Access, 2020, 8: 14531-14544. doi: 10.1109/ACCESS.2020.2966881
|
[19] |
ZHANG De-jin, ZOU Qin, LIN Hong, et al. Automatic pavement defect detection using 3D laser profiling technology[J]. Automation in Construction, 2018, 96: 350-365. doi: 10.1016/j.autcon.2018.09.019
|
[20] |
丁世海, 战友, 阳恩慧, 等. 基于高精度激光断面高程的沥青路面MTD测量[J]. 东南大学学报(自然科学版), 2020, 50(1): 137-142. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202001018.htm
DING Shi-hai, ZHAN You, YANG En-hui, et al. MTD measurement of asphalt pavement based on high precision laser section elevation[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(1): 137-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202001018.htm
|
[21] |
CHEN Jia-ying, HUANG Xiao-ming, ZHENG Bin-shuang, et al. Real-time identification system of asphalt pavement texture based on the close-range photogrammetry[J]. Construction and Building Materials, 2019, 226: 910-919. doi: 10.1016/j.conbuildmat.2019.07.321
|
[22] |
ZHANG A, WANG K C P, LI Bao-xian, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(10): 805-819. doi: 10.1111/mice.12297
|
[23] |
ZHANG A, WANG K C P, FEI Yue, et al. Deep learning-based fully automated pavement crack detection on 3D asphalt surfaces with an improved CrackNet[J]. Journal of Computing in Civil Engineering, 2018, 32(5): 04018041. doi: 10.1061/(ASCE)CP.1943-5487.0000775
|
[24] |
ZHANG A, WANG K C P, FEI Yue, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces with a recurrent neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2019, 34(3): 213-229. doi: 10.1111/mice.12409
|
[25] |
FEI Yue, WANG K C P, ZHANG A, et al. Pixel-level cracking detection on 3D asphalt pavement images through deep-learning-based CrackNet-V[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 273-284. doi: 10.1109/TITS.2019.2891167
|
[26] |
GUAN Jin-chao, YANG Xu, DING Ling, et al. Automated pixel-level pavement distress detection based on stereo vision and deep learning[J]. Automation in Construction, 2021, 129: 103788. doi: 10.1016/j.autcon.2021.103788
|
[27] |
曾清红, 卢德唐. 基于移动最小二乘法的曲线曲面拟合[J]. 工程图学学报, 2004, 25(1): 84-89. doi: 10.3969/j.issn.1003-0158.2004.01.017
ZENG Qing-hong, LU De-tang. Curve and surface fitting based on moving least-squares methods[J]. Journal of Graphics, 2004, 25(1): 84-89. (in Chinese) doi: 10.3969/j.issn.1003-0158.2004.01.017
|
[28] |
HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv, 2017, DOI:
|
[29] |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// NAVAB N, HORNEGGER J, WELLS W, et al. 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234-241.
|
[30] |
LAU S L H, CHONG E K P, YANG X, et al. Automated pavement crack segmentation using U-Net-based convolutional neural network[J]. IEEE Access, 2020, 8: 114892. doi: 10.1109/ACCESS.2020.3003638
|
[31] |
CHEN Jie, LIU Gang, CHEN Xin. Road crack image segmentation using global context U-net[C]//GOKHALE A, TAN Y. Proceedings of the 2019 3rd International Conference on Computer Science and Artificial Intelligence. New York: Association for Computing Machinery, 2019: 181-185.
|