Volume 24 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
WANG Kai-yun, HE Wen-tao, HU Yan-lin, GE Xin. Comparison of dynamics characteristics of empty and full load gondola cars subjected to crosswind[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 217-226. doi: 10.19818/j.cnki.1671-1637.2024.03.015
Citation: WANG Kai-yun, HE Wen-tao, HU Yan-lin, GE Xin. Comparison of dynamics characteristics of empty and full load gondola cars subjected to crosswind[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 217-226. doi: 10.19818/j.cnki.1671-1637.2024.03.015

Comparison of dynamics characteristics of empty and full load gondola cars subjected to crosswind

doi: 10.19818/j.cnki.1671-1637.2024.03.015
Funds:

National Natural Science Foundation of China 52388102

More Information
  • Author Bio:

    WANG Kai-yun(1974-), male, professor, PhD, kywang@swjtu.edu.cn

  • Received Date: 2024-02-05
    Available Online: 2024-07-18
  • Publish Date: 2024-06-30
  • An aerodynamics model of freight train with one locomotive and four gondola cars was developed. The pressure distributions on the surfaces of empty and full load gondola cars at different wind speeds were studied. The aerodynamic loads on gondola cars were calculated and applied to the aerodynamics model. The dynamics characteristics of empty and full load gondola cars under crosswinds with different speeds were analyzed from the perspectives of vehicle posture and operation safety. Research results show that the first gondola car behind the locomotive suffers the largest side force, lift force and rolling moment under crosswind. At a wind speed of 10 m·s-1, the maximum values are -7.17 kN, 4.59 kN, and 1.89 kN·m, respectively. For the first gondola car, when wind speed is 10 m·s-1, the side force, pitch moment, and yaw moment at full load state decrease by 15.8%, 79.0%, and 12.2% compared to no load state, respectively. Conversely, the lift force and side rolling moment increase by 39.9% and 56.6%, respectively. Thus, the loading state significantly affects the aerodynamic loads on gondola cars under crosswind. Empty gondola car is more susceptible to the aerodynamic loads. At the wind speeds of 25 and 30 m·s-1, the lateral displacements of the first empty gondola car are -12.66 and -14.82 mm, respectively, while those of the first full load gondola car are -12.01 and -13.68 mm, respectively. The side rolling angles of the first empty gondola car are -0.69° and -0.83°, respectively, compared to -0.64° and -0.73° for the first full load gondola car. Therefore, the lateral displacement and side rolling angle of empty gondola car are greater than those of full load gondola car. At a wind speed of 25 m·s-1, the wheel load reduction rate of empty gondola car reaches 0.68, exceeding the limit of 0.65, while that of full load gondola car is 0.24, below the limit. At a wind speed of 30 m·s-1, the overturning coefficient of empty gondola car reaches 0.75, approaching the limit of 0.80, while that of full load gondola car is only 0.23. Thus, there is a safety risk for empty gondola cars under high-speed crosswind.

     

  • loading
  • [1]
    田红旗. 中国列车空气动力学研究进展[J]. 交通运输工程学报, 2006, 6(1): 1-9. https://transport.chd.edu.cn/article/id/200601001

    TIAN Hong-qi. Study evolvement of train aerodynamics in China[J]. Journal of Traffic and Transportation Engineering, 2006, 6(1): 1-9. (in Chinese) https://transport.chd.edu.cn/article/id/200601001
    [2]
    杨国伟, 魏宇杰, 赵桂林, 等. 高速列车的关键力学问题[J]. 力学进展, 2015, 45(7): 217-460. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500007.htm

    YANG Guo-wei, WEI Yu-jie, ZHAO Gui-lin, et al. Research progress on the mechanics of high speed rails[J]. Advances in Mechanics, 2015, 45(7): 217-460. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201500007.htm
    [3]
    梁习锋, 熊小慧. 4种车型横向气动性能分析与比较[J]. 中南大学学报(自然科学版), 2006, 37(3): 607-612. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200603035.htm

    LIANG Xi-feng, XIONG Xiao-hui. Analysis and comparison oflateral aerodynamic performance on four kinds of cars[J]. Journal of Central South University (Science and Technology), 2006, 37(3): 607-612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD200603035.htm
    [4]
    HUO Xiao-shuai, LIU Tang-hong, CHEN Zheng-wei, et al. Effect of the formation type with different freight vehicles on the train aerodynamic performance[J]. Vehicle System Dynamics, 2021, 60(11): 3868-3896.
    [5]
    何华, 田红旗, 熊小慧, 等. 横风作用下敞车的气动性能研究[J]. 中国铁道科学, 2006, 27(3): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603012.htm

    HE Hua, TIAN Hong-qi, XIONG Xiao-hui, et al. Study on the aerodynamics performance of gondola car under cross wind[J]. China Railway Science, 2006, 27(3): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200603012.htm
    [6]
    马成成. 横风作用下快速货车气动特性及运行安全性研究[D]. 成都: 西南交通大学, 2021.

    MA Cheng-cheng. The study on aerodynamic characteristics and operation safety of fast freight car under crosswinds[D]. Chengdu: Southwest Jiaotong University, 2021. (in Chinese)
    [7]
    张田, 张楠, 王少钦, 等. 基于可靠度理论的桥上列车横风安全性分析[J]. 振动与冲击, 2019, 38(17): 226-231. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917032.htm

    ZHANG Tian, ZHANG Nan, WANG Shao-qin. et al. Crosswind safety analysis for a train running on abridge based on reliability theory[J]. Journal of Vibration and Shock, 2019, 38(17): 226-231. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917032.htm
    [8]
    何佳骏, 向活跃, 龙俊廷, 等. 桥隧过渡段高速列车行车抗风安全分析[J]. 西南交通大学学报, 2021, 56(5): 1056-1064. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202105022.htm

    HE Jia-jun, XIANG Huo-yue, LONG Jun-ting, et al. Wind-resistant safety analysis of high-speed trains passing through bridge-tunnel transition[J]. Journal of Southwest Jiaotong University, 2021, 56(5): 1056-1064. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202105022.htm
    [9]
    LIU Dong-run, LIANG Xi-feng, ZHOU Wei, et al. Contributions of bogie aerodynamic loads to the crosswind safety of a high-speed train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 228: 105082. doi: 10.1016/j.jweia.2022.105082
    [10]
    CHEN Zheng-wei, LIU Tang-hong, GUO Zi-jian, et al. Dynamic behaviors and mitigation measures of a train passing through windbreak transitions from ground to cutting[J]. Journal of Central South University, 2022, 29(8): 2675-2689. doi: 10.1007/s11771-022-5114-6
    [11]
    ZHANG Dong-qin, ZHONG Mu, HU Gang, et al. Numerical study of the unsteady crosswind response of high-speed train under local structure-induced unsteady winds by MBS[J]. Engineering Structures, 2023, 281: 115788. doi: 10.1016/j.engstruct.2023.115788
    [12]
    FLYNN D, HEMIDA H, BAKER C. On the effect of crosswinds on the slipstream of a freight train and associated effects[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 156: 14-28. doi: 10.1016/j.jweia.2016.07.001
    [13]
    LI Chao, BURTON D, KOST M, et al. Flow topology of a container train wagon subjected to varying local loading configurations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 169: 12-29. doi: 10.1016/j.jweia.2017.06.011
    [14]
    MALEKI S, BURTON D, THOMPSON M C. On the flow past and forces on double-stacked wagons within a freight train under cross-wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104224. doi: 10.1016/j.jweia.2020.104224
    [15]
    高广军, 段丽丽, 苗秀娟. 青藏线棚车在强横风下的倾覆稳定性[J]. 中南大学学报(自然科学版), 2011, 42(4): 1150-1155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201104048.htm

    GAO Guang-jun, DUAN Li-li, MIAO Xiu-juan. Overturning stability of box-car on Qinghai-Tibet Railway Line with strong cross wind[J]. Journal of Central South University (Science and Technology), 2011, 42(4): 1150-1155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201104048.htm
    [16]
    高广军, 李鹏. 青藏线上集装箱平车在强横风下的稳定性[J]. 中南大学学报(自然科学版), 2011, 42(2): 533-538. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201102042.htm

    GAO Guang-jun, LI Peng. Runing stability of container car in Qinghai-Tibet Railway Line[J]. Journal of Central South University (Science and Technology), 2011, 42(2): 533-538. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201102042.htm
    [17]
    高广军, 田红旗, 姚松, 等. 兰新线强横风对车辆倾覆稳定性的影响[J]. 铁道学报, 2004, 26(4): 36-40. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404008.htm

    GAO Guang-jun, TIAN Hong-qi, YAO Song, et al. Effect of strong cross-wind on the stability of trains running on the Lanzhou-Xinjiang Railway Line[J]. Journal of the China Railway Society, 2004, 26(4): 36-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB200404008.htm
    [18]
    蒋崇文, 张劲柏, 关雪梅, 等. 横风强度对平原上集装箱列车横向稳定性的影响[J]. 铁道学报, 2011, 33(3): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201103005.htm

    JIANGChong-wen, ZHANG Jin-bai, GUAN Xue-mei, et al. Influence of crosswind intensity on cross stability of container trains running on plain[J]. Journal of the China Railway Society, 2011, 33(3): 17-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201103005.htm
    [19]
    龚凯, 刘林芽, 向俊, 等. 横风作用对重载铁路桥上列车脱轨全过程的影响[J]. 铁道学报, 2022, 44(8): 125-134. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202208014.htm

    GONG Kai, LIU Lin-ya, XIANG Jun, et al. Effects of crosswind on freight train derailment process on heavy haul railway bridge[J]. Journal of the China Railway Society, 2022, 44(8): 125-134. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202208014.htm
    [20]
    姚志勇, 张楠, 夏禾, 等. 基于重叠网格的三维车桥系统气动特性研究[J]. 工程力学, 2018, 35(2): 38-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802007.htm

    YAO Zhi-yong, ZHANG Nan, XIA He, et al. Study on aerodynamic performance of three-dimensional train-bridge system based on overset mesh[J]. Engineering Mechanics, 2018, 35(2): 38-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802007.htm
    [21]
    李田, 秦登, 张继业, 等. 高速列车气动及声学行为的尺度效应研究[J]. 铁道学报, 2022, 44(2): 16-26. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202202003.htm

    LI Tian, QIN Deng, ZHANG Ji-ye, et al. Study on scale effect of aerodynamic and acoustic behaviors of high-speed trains[J]. Journal of the China Railway Society, 2022, 44(2): 16-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202202003.htm
    [22]
    NIU Ji-qiang, ZHANG Ying-chao, LI Rui, et al. Aerodynamic simulation of effects of one- and two-side windbreak walls on a moving train running on a double track railway line subjected to strong crosswind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 221: 104912. doi: 10.1016/j.jweia.2022.104912
    [23]
    SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
    [24]
    BS EN 14067-6: 2018, Railway applications-aerodynamics Part 6: Requirements and test procedures for cross wind assessment[S].
    [25]
    邹云峰, 刘志鹏, 史康, 等. 横风作用下悬挂单轨车桥系统动力响应研究[J]. 中南大学学报(自然科学版), 2022, 53(6): 2370-2381. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206036.htm

    ZOU Yun-feng, LIU Zhi-peng, SHI Kang, et al. Study on dynamic response of suspended monorail vehicle-bridge system with crosswinds[J]. Journal of Central South University (Science and Technology), 2022, 53(6): 2370-2381. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202206036.htm
    [26]
    GE Xin, LING Liang, GUO Li-rong, et al. Dynamic derailment simulation of an empty wagon passing a turnout in the through route[J]. Vehicle System Dynamics, 2022, 60(4): 1148-1169. doi: 10.1080/00423114.2020.1849744
    [27]
    何文涛, 胡彦霖, 閤鑫, 等. 货物列车敞车空载及侧风运营条件下的运行安全性研究[J]. 工程力学, 2023, http://kns.cnki.net/kcms/detail/11.2595.O3.20230810.1707.006.html.

    HE Wen-tao, HU Yan-lin, GE Xin, et al. Research on operation safety of empty gondola cars in freight trains subjected to crosswind[J]. Engineering Mechanics, 2023, http://kns.cnki.net/kcms/detail/11.2595.O3.20230810.1707.006.html. (in Chinese)
    [28]
    SOPER D, BAKER C, STERLING M. An experimental investigation to assess the influence of container loading configuration on the effects of a crosswind on a container freight train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 145: 304-317. doi: 10.1016/j.jweia.2015.03.002
    [29]
    LIU Dong-run, LI Tian, MENG Shi, et al. Investigating the car-body vibration of high-speed trains under different operating conditions with full-scale tests[J]. Vehicle System Dynamics, 2022, 60(2): 633-652. doi: 10.1080/00423114.2020.1828594
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (137) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return