Citation: | WANG Jun-cheng, LYU Lin-feng, WANG Fa-hui. Anti-lock braking control based on interval type-2 fuzzy logic[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 238-250. doi: 10.19818/j.cnki.1671-1637.2024.03.017 |
[1] |
《中国公路学报》编辑部. 中国汽车工程学术研究综述·2017[J]. 中国公路学报, 2017, 30(6): 1-197. doi: 10.3969/j.issn.1001-7372.2017.06.001
Editorial Department of China Journal of Highway and Transport. Review on China's automotive engineering research progress: 2017[J]. China Journal of Highway and Transport, 2017, 30(6): 1-197. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.06.001
|
[2] |
CHIANG W P, YIN De-jun, SHIMIZU H. Slip-based regenerative ABS control for in-wheel-motor drive EV[J]. Journal of the Chinese Institute of Engineers, 2015, 38(2): 220-231. doi: 10.1080/02533839.2014.955974
|
[3] |
刘志强, 濮晛. 电动汽车连续再生制动系统防抱死制动试验研究[J]. 汽车工程, 2018, 40(7): 804-811. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201807009.htm
LIU Zhi-qiang, PU Xian. An experimental study on anti-lock braking of continuous regenerative braking system in electric vehicles[J]. Automotive Engineering, 2018, 40(7): 804-811. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201807009.htm
|
[4] |
王骏骋, 何仁. 电动车辆ABS的改进线性二次型最优控制[J]. 哈尔滨工业大学学报, 2018, 50(9): 108-115. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201809017.htm
WANG Jun-cheng, HE Ren. Improved linear quadratic optimal control of ABS for an electric vehicle[J]. Journal of Harbin Institute of Technology, 2018, 50(9): 108-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201809017.htm
|
[5] |
MEI Peng, KARIMI H R, YANG Shi-chun, et al. An adaptive fuzzy sliding-mode control for regenerative braking system of electric vehicles[J]. International Journal of Adaptive Control and Signal Processing, 2022, 36(2): 391-410. doi: 10.1002/acs.3347
|
[6] |
AMIRKHANI A, MOLAIE M. Fuzzy controllers of antilock braking system: a review[J]. International Journal of Fuzzy Systems, 2023, 25(1): 222-244. doi: 10.1007/s40815-022-01376-y
|
[7] |
WANG W Y, CHEN Ming-chang, SU Shun-feng. Hierarchical T-S fuzzy-neural control of anti-lock braking system and active suspension in a vehicle[J]. Automatica, 2012, 48(8): 1698-1706. doi: 10.1016/j.automatica.2012.05.033
|
[8] |
YAZICIOGLU Y, UNLUSOY Y S. A fuzzy logic controlled anti-lock braking system (ABS) for improved braking performance and directional stability[J]. International Journal of Vehicle Design, 2008, 48(3/4): 299-315. doi: 10.1504/IJVD.2008.022581
|
[9] |
PI D W, CHEN N, ZHANG B J. Experimental demonstration of a vehicle stability control system in a split-μ manoeuvre[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2011, 225(3): 305-317. doi: 10.1177/09544070JAUTO1541
|
[10] |
AKSJONOV A, AUGSBURG K, VODOVOZOV V. Design and simulation of the robust ABS and ESP fuzzy logic controller on the complex braking maneuvers[J]. Applied Sciences, 2016, 6(12): 382. doi: 10.3390/app6120382
|
[11] |
CHEN Y C, TU C H, LIN C L. Integrated electromagnetic braking/driving control of electric vehicles using fuzzy inference[J]. IET Electric Power Applications, 2019, 13(7): 1014-1021. doi: 10.1049/iet-epa.2018.5817
|
[12] |
FERNÁNDEZ J P, VARGAS M A, GARCÍA J M V, et al. Coevolutionary optimization of a fuzzy logic controller for antilock braking systems under changing road conditions[J]. IEEE Transactions on Vehicular Technology, 2021, 70(20): 1255-1268.
|
[13] |
SHAHABI A, KAZEMIAN A H, FARAHAT S, et al. Wheel slip ratio regulation for investigating the vehicle's dynamic behavior during braking and steering input[J]. Mechanics and Industry, 2021, 22: 17. doi: 10.1051/meca/2021016
|
[14] |
王国微, 尹安东. 基于神经网络路面识别的电动汽车ABS控制研究[J]. 合肥工业大学学报(自然科学版), 2020, 43(7): 878-883. doi: 10.3969/j.issn.1003-5060.2020.07.003
WANG Guo-wei, YIN An-dong. Research on ABS control of electric vehicle based on road recognition using neural network[J]. Journal of Hefei University of Technology (Natural Science), 2020, 43(7): 878-883. (in Chinese) doi: 10.3969/j.issn.1003-5060.2020.07.003
|
[15] |
熊璐, 崔天宝, 韩伟, 等. 基于模糊逻辑的电子液压制动系统防抱死控制[J]. 机电一体化, 2018, 24(8): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JDTH201808007.htm
XIONG Lu, CUI Tian-bao, HAN Wei, et al. Anti-lock braking control for electronic hydraulic braking system based on fuzzy logic[J]. Mechatronics, 2018, 24(8): 40-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDTH201808007.htm
|
[16] |
WU Dong-rui. On the fundamental differences between interval type-2 and type-1 fuzzy logic controllers[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(5): 832-848. doi: 10.1109/TFUZZ.2012.2186818
|
[17] |
陈阳, 王大志. 基于加权Karnik-Mendel算法的区间二型模糊逻辑系统降型[J]. 控制理论与应用, 2016, 33(10): 1327-1336. doi: 10.7641/CTA.2016.60098
CHEN Yang, WANG Da-zhi. Type-reduction of interval type-2 fuzzy logic systems with weighted Karnik-Mendel algorithms[J]. Control Theory and Applications, 2016, 33(10): 1327-1336. (in Chinese) doi: 10.7641/CTA.2016.60098
|
[18] |
张彪, 周绍生. 区间二型随机模糊系统的稳定性分析和控制设计[J]. 控制理论与应用, 2015, 32(7): 985-992. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201507018.htm
ZHANG Biao, ZHOU Shao-sheng. Stability analysis and control design for interval type-2 stochastic fuzzy systems[J]. Control Theory and Applications, 2015, 32(7): 985-992. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201507018.htm
|
[19] |
佃松宜, 梁伟博, 赵涛. 基于改进QPSO的两轮移动机器人区间二型模糊逻辑控制[J]. 控制与决策, 2019, 34(2): 261-268. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201902005.htm
DIAN Song-yi, LIANG Wei-bo, ZHAO Tao. Interval type-2 fuzzy logic control for a two-wheeled mobile robot based on improved QPSO[J]. Control and Decision, 2019, 34(2): 261-268. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201902005.htm
|
[20] |
罗刚, 王永富, 柴天佑, 等. 基于区间二型模糊摩擦补偿的鲁棒自适应控制[J]. 自动化学报, 2019, 45(7): 1298-1306. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907007.htm
LUO Gang, WANG Yong-fu, CHAI Tian-you, et al. Robust adaptive control based on interval type-2 fuzzy friction compensation[J]. Acta Automatica Sinica, 2019, 45(7): 1298-1306. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201907007.htm
|
[21] |
BIN PEEIE M H, OGINO H, OSHINOYA Y. Skid control of a small electric vehicle with two in-wheel motors: simulation model of ABS and regenerative brake control[J]. International Journal of Crashworthiness, 2016, 21(5): 396-406. doi: 10.1080/13588265.2016.1147731
|
[22] |
YU De-liang, WANG Wen-song, ZHANG Hui-bo, et al. Research on anti-lock braking control strategy of distributed-driven electric vehicle[J]. IEEE Access, 2020, 8: 162467-162478. doi: 10.1109/ACCESS.2020.3021193
|
[23] |
YANG Yang, TANG Qing-song, LI Bo-lin, et al. Dynamic coordinated control for regenerative braking system and anti-lock braking system for electrified vehicles under emergency braking conditions[J]. IEEE Access, 2020, 8: 172664-172677. doi: 10.1109/ACCESS.2020.3024918
|
[24] |
姚芳, 林祥辉, 吴正斌, 等. 汽车防抱死制动系统的自抗扰控制研究[J]. 中国公路学报, 2021, 34(3): 235-244. doi: 10.3969/j.issn.1001-7372.2021.03.018
YAO Fang, LIN Xiang-hui, WU Zheng-bin, et al. Active disturbance rejection control for automotive anti-lock braking system[J]. China Journal of Highway and Transport, 2021, 34(3): 235-244. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.03.018
|
[25] |
WANG Jun-cheng, HE Ren. Hydraulic anti-lock braking control strategy of a vehicle based on a modified optimal sliding mode control method[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(12): 3185-3198. doi: 10.1177/0954407018820445
|
[26] |
YANG Feng, CHEN Xin, GUO Dong, et al. Electric-hydraulic compound control anti-lock braking system[J]. International Journal of Automotive Technology, 2022, 23(6): 1593-1608. doi: 10.1007/s12239-022-0139-2
|
[27] |
苑磊, 何仁. 基于线性自抗扰控制的汽车ABS滑移率控制研究[J]. 汽车工程, 2021, 43(9): 1367-1374, 1393. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202109014.htm
YUAN Lei, HE Ren. Research on ABS slip ratio control of vehicle based on linear active disturbance rejection control[J]. Automotive Engineering, 2021, 43(9): 1367-1374, 1393. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202109014.htm
|
[28] |
ZHAO Xuan-ming, MO Hong, YAN Ke-fu, et al. Type-2 fuzzy control for driving state and behavioral decisions of unmanned vehicle[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(1): 178-186. doi: 10.1109/JAS.2019.1911810
|
[29] |
KHALIFA T R, EL-NAGAR A M, EL-BRAWANY M A, et al. A novel Hammerstein model for nonlinear networked systems based on an interval type-2 fuzzy Takagi-Sugeno-Kang system[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(2): 275-285. doi: 10.1109/TFUZZ.2020.3007460
|
[30] |
靳立强, 孙志祥, 郑迎. 电动轮汽车复合再生制动系统防抱协调控制[J]. 吉林大学学报(工学版), 2017, 47(5): 1344-1351. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201705003.htm
|
[31] |
张露, 王国业, 张延立, 等. 电动汽车再生摩擦集成制动系统ABS控制性能研究[J]. 农业机械学报, 2015, 46(10): 350-356. doi: 10.6041/j.issn.1000-1298.2015.10.047
ZHANG Lu, WANG Guo-ye, ZHANG Yan-li, et al. ABS control performance of integrated brake system with regenerative friction brake in electric vehicle regenerative friction brake in electric vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(10): 350-356. (in Chinese) doi: 10.6041/j.issn.1000-1298.2015.10.047
|
[32] |
周淑文, 陈庆明, 孙大明. 基于EMB系统的整车ABS滑模变结构控制[J]. 东北大学学报(自然科学版), 2016, 37(7): 994-997. doi: 10.3969/j.issn.1005-3026.2016.07.018
ZHOU Shu-wen, CHEN Qing-ming, SUN Da-ming. Variable structure control with sliding mode for ABS of vehicle based on EMB system[J]. Journal of Northeastern University (Natural Science), 2016, 37(7): 994-997. (in Chinese) doi: 10.3969/j.issn.1005-3026.2016.07.018
|
[33] |
PRETAGOSTINI F, FERRANTI L, BERARDO G, et al. Survey on wheel slip control design strategies, evaluation and application to antilock braking systems[J]. IEEE Access, 2020, 8: 10951-10970. doi: 10.1109/ACCESS.2020.2965644
|