Volume 24 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
CHEN Li-jia, ZHOU Xin-wei, YANG Pei-yi, WANG Kai, LI Sheng-wei. Modeling and prediction method of ship maneuvering motion facing environmental uncertainty[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 279-295. doi: 10.19818/j.cnki.1671-1637.2024.03.020
Citation: CHEN Li-jia, ZHOU Xin-wei, YANG Pei-yi, WANG Kai, LI Sheng-wei. Modeling and prediction method of ship maneuvering motion facing environmental uncertainty[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 279-295. doi: 10.19818/j.cnki.1671-1637.2024.03.020

Modeling and prediction method of ship maneuvering motion facing environmental uncertainty

doi: 10.19818/j.cnki.1671-1637.2024.03.020
Funds:

National Key Research and Development Program of China 2019YFB1600603

More Information
  • Author Bio:

    CHEN Li-jia(1979-), male, associate professor, PhD, navisky@qq.com

  • Received Date: 2024-01-09
    Available Online: 2024-07-18
  • Publish Date: 2024-06-30
  • In response to the issue of prediction accuracy of ship maneuvering motion under complicated environmental factors, a grey box identification modeling and prediction method for ship maneuvering motion under environmental uncertainty was proposed. The separated ship maneuvering motion model structure was referenced, the ship maneuvering motion mechanism was considered, and a simplified grey box model was developed. Suitable test subjects were selected, and parameter identification was conducted on the established ship maneuvering motion grey box model using the least squares support vector machine algorithm. The generalization ability was examined by means of the turning cycle tests and zigzag maneuvering tests. By analyzing the environmental uncertainty factors, the wave force interference model, data transmission delay model, and sensing device error model were constructed. Based on these models, the ship motion response training data affected by multiple environmental uncertainties were generated. Through the simulated tests, the prediction accuracy of the proposed method under environmental uncertainties was validated. Research results reveal that in ship maneuvering motion prediction tests with environmental uncertainty factors, when the sensing device error gradually increases from 0 to 5% and 10%, except for the rolling speed affected by a small initial magnitude, the root mean square errors (RMSEs) of other ship motion response prediction results increase by less than 10%, so the accuracy of the prediction model can be effectively guaranteed. Under the extreme condition with a 20% sensing device error, the prediction errors of surge speed, sway speed, and yawing speed increase by 4.65%, 15.97%, and 18.17%, respectively compared to the 0 error level, so the error increase is effectively controlled below 20%. Thus, the ship maneuvering motion modeling and prediction method can achieve a high-precision prediction of ship maneuvering motion under the interference of environmental uncertainty factors to a certain extent.

     

  • loading
  • [1]
    严新平, 贺亚鹏, 贺宜, 等. 水路交通技术发展趋势[J]. 交通运输工程学报, 2022, 22(4): 1-9. doi: 10.19818/j.cnki.1671-1637.2022.04.001

    YAN Xin-ping, HE Ya-peng, HE Yi, et al. Development trends of waterway transportation technology[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 1-9. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.04.001
    [2]
    赵百岗, 张显库, 李争, 等. 船舶运动辨识建模研究现状与展望[J]. 舰船科学技术, 2021, 43(23): 21-24. doi: 10.3404/j.issn.1672-7649.2021.12.004

    ZHAO Bai-gang, ZHANG Xian-ku, LI Zheng, et al. Research on ship motion identification modeling[J]. Ship Science and Technology, 2021, 43(23): 21-24. (in Chinese) doi: 10.3404/j.issn.1672-7649.2021.12.004
    [3]
    ZHANG Yan-yun, WANG Zi-hao, ZOU Zao-jian. Black-box modeling of ship maneuvering motion based on multi-output nu-support vector regression with random excitation signal[J]. Ocean Engineering, 2022, 257: 111279. doi: 10.1016/j.oceaneng.2022.111279
    [4]
    张秀凤, 王晓雪, 孟耀, 等. 船舶运动建模与仿真研究进展及未来发展趋势[J]. 大连海事大学学报, 2021, 47(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS202101001.htm

    ZHANG Xiu-feng, WANG Xiao-xue, MENG Yao, et al. Research progress and future development trend of ship motion modeling and simulation[J]. Journal of Dalian Maritime University, 2021, 47(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS202101001.htm
    [5]
    卢冠宇, 姚建喜. 基于SVR的船舶操纵运动黑箱建模[J]. 中国航海, 2021, 44(4): 13-19, 31. doi: 10.3969/j.issn.1000-4653.2021.04.003

    LU Guan-yu, YAO Jian-xi. Black-box modeling of ship maneuvering by means of SVR[J]. Navigation of China, 2021, 44(4): 13-19, 31. (in Chinese) doi: 10.3969/j.issn.1000-4653.2021.04.003
    [6]
    梅斌, 孙立成, 史国友, 等. 基于单参数自调节RM-GO-LSVR的船舶操纵灰箱辨识建模[J]. 交通运输工程学报, 2020, 20(2): 88-99. doi: 10.19818/j.cnki.1671-1637.2020.02.008

    MEI Bin, SUN Li-cheng, SHI Guo-you, et al. Grey box identification modeling for ship maneuverability based on single parameter self-adjustable RM-GO-LSVR[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 88-99. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.008
    [7]
    LUO Wei-lin, ZOU Zao-jian. Identification of response models of ship maneuvering motion using support vector machines[J]. Journal of Ship Mechanics, 2007, 11(6): 832-838. doi: 10.3969/j.issn.1007-7294.2007.06.003
    [8]
    WANG Xue-gang, ZOU Zao-jian, YU Long, et al. System identification modeling of ship manoeuvring motion in 4 degrees of freedom based on support vector machines[J]. China Ocean Engineering, 2015, 29(4): 519-534. doi: 10.1007/s13344-015-0036-9
    [9]
    CHEN Li-jia, YANG Pei-yi, LI Sheng-wei, et al. Grey-box identification modeling of ship maneuvering motion based on LS-SVM[J]. Ocean Engineering, 2022, 266: 112957. doi: 10.1016/j.oceaneng.2022.112957
    [10]
    徐锋, 刘志平, 郑海斌, 等. 基于LS-SVM的船舶操纵运动在线建模[J]. 船舶力学, 2021, 25(6): 752-759. doi: 10.3969/j.issn.1007-7294.2021.06.007

    XU Feng, LIU Zhi-ping, ZHENG Hai-bin, et al. On-line modeling of ship maneuvering motion by using LS-SVM[J]. Journal of Ship Mechanics, 2021, 25(6): 752-759. (in Chinese) doi: 10.3969/j.issn.1007-7294.2021.06.007
    [11]
    谢朔, 初秀民, 柳晨光, 等. 基于改进LSSVM的船舶操纵运动模型在线参数辨识方法[J]. 中国造船, 2018, 59(2): 178-189. doi: 10.3969/j.issn.1000-4882.2018.02.019

    XIE Shuo, CHU Xiu-min, LIU Chen-guang, et al. Online parameter identification method for ship maneuvering models based on improved LSSVM[J]. Shipbuilding of China, 2018, 59(2): 178-189. (in Chinese) doi: 10.3969/j.issn.1000-4882.2018.02.019
    [12]
    邱文钦, 唐存宝, 唐强荣. 不确定条件下内河航道通航环境风险评价[J]. 中国航海, 2019, 42(1): 52-55, 67. doi: 10.3969/j.issn.1000-4653.2019.01.011

    QIU Wen-qin, TANG Cun-bao, TANG Qiang-rong. Navigation environment risk assessment of uncertain inland waterway[J]. Navigation of China, 2019, 42(1): 52-55, 67. (in Chinese) doi: 10.3969/j.issn.1000-4653.2019.01.011
    [13]
    范存龙, 张笛, 姚厚杰, 等. 海上自主水面船舶航行风险识别[J]. 中国航海, 2019, 42(2): 75-82. doi: 10.3969/j.issn.1000-4653.2019.02.015

    FAN Cun-long, ZHANG Di, YAO Hou-jie, et al. Navigational risk identification for maritime autonomous surface ship[J]. Navigation of China, 2019, 42(2): 75-82. (in Chinese) doi: 10.3969/j.issn.1000-4653.2019.02.015
    [14]
    黄柏刚, 邹早建. 基于固定网格小波神经网络的不规则波中船舶横摇运动在线预报[J]. 船舶力学, 2020, 24(6): 693-705. doi: 10.3969/j.issn.1007-7294.2020.06.001

    HUANG Bai-gang, ZOU Zao-jian. Online prediction of ship roll motion in irregular waves using a fixed grid wavelet network[J]. Journal of Ship Mechanics, 2020, 24(6): 693-705. (in Chinese) doi: 10.3969/j.issn.1007-7294.2020.06.001
    [15]
    WANG Tong-tong, LI Guo-yuan, WU Bai-hang, et al. Parameter identification of ship manoeuvrling model under disturbance using support vector machine method[J]. Ships and Offshore Structures, 2021, 16(S1): 13-21.
    [16]
    夏召丹, 马翔, 刘义, 等. 基于虚实结合的波浪环境下船舶操纵运动机器学习建模研究[J]. 水动力学研究与进展A辑, 2022, 37(6): 763-768. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ202206003.htm

    XIA Zhao-dan, MA Xiang, LIU Yi, et al. Machine learning for ship maneuvering in wave[J]. Chinese Journal of Hydrodynamics, 2022, 37(6): 763-768. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ202206003.htm
    [17]
    JIANG Yan, HOU Xian-rui, WANG Xue-gang, et al. Identification modeling and prediction of ship maneuvering motion based on LSTM deep neural network[J]. Journal of Marine Science and Technology, 2022, 27(1): 125-137. doi: 10.1007/s00773-021-00819-9
    [18]
    XUE Yi-fan, CHEN Gang, LI Zhi-tong, et al. Online identification of a ship maneuvering model using a fast noisy input Gaussian process[J]. Ocean Engineering, 2022, 250: 110704. doi: 10.1016/j.oceaneng.2022.110704
    [19]
    姜岩, 王雪刚, 侯先瑞, 等. 深度循环神经网络在船舶操纵运动辨识中的对比研究[J]. 水动力学研究与进展A辑, 2023, 38(2): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ202302004.htm

    JIANG Yan, WANG Xue-gang, HOU Xian-rui, et al. Comparative study on identification of ship maneuvering motion based on deep recurrent neural network[J]. Journal of Marine Science and Technology, 2023, 38(2): 187-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDLJ202302004.htm
    [20]
    ZHOU Xiao, ZOU Lu, OUYANG Zi-lu, et al. Nonparametric modeling of ship maneuvering motions in calm water and regular waves based on R-LSTM hybrid method[J]. Ocean Engineering, 2023, 285: 115259. doi: 10.1016/j.oceaneng.2023.115259
    [21]
    曾道辉, 蔡成涛. 基于修正辅助变量法的船舶操纵响应模型辨识[J]. 哈尔滨工程大学学报, 2023, 44(2): 161-171. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202302001.htm

    ZENG Dao-hui, CAI Cheng-tao. Identification of the ship maneuvering response model based on recursive refined instrumental variable least-squares[J]. Journal of Harbin Engineering University, 2023, 44(2): 161-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202302001.htm
    [22]
    曾柯, 顾民, 鲁江, 等. 方形波浪中船舶参数横摇数值模拟方法研究[J]. 中国造船, 2021, 62(4): 65-74. doi: 10.3969/j.issn.1000-4882.2021.04.005

    ZENG Ke, GU Min, LU Jiang, et al. Numerical prediction of parametric rolling of ships in cross waves[J]. Shipbuilding of China, 2021, 62(4): 65-74. (in Chinese) doi: 10.3969/j.issn.1000-4882.2021.04.005
    [23]
    SON K, NOMOTO K. On the coupled motion of steering and rolling of a high speed container ship[J]. Journal of the Society of Naval Architects of Japan, 1981, 1981(150): 232-244. doi: 10.2534/jjasnaoe1968.1981.150_232
    [24]
    HU Yi, SONG Li-fei, LIU Zu-yuan, et al. Identification of ship hydrodynamic derivatives based on LS-SVM with wavelet threshold denoising[J]. Journal of Marine Science and Engineering, 2021, 9(12): 1356-1356. doi: 10.3390/jmse9121356
    [25]
    CHEN Li-jia, YANG Pei-yi, LI Shi-gang, et al. Online modeling and prediction of maritime autonomous surface ship maneuvering motion under ocean waves[J]. Ocean Engineering, 2023, 276: 114183. doi: 10.1016/j.oceaneng.2023.114183
    [26]
    NIE Zhi-hong, SHEN Feng, XU Ding-jie, et al. An EMD-SVR model for short-term prediction of ship motion using mirror symmetry and SVR algorithms to eliminate EMD boundary effect[J]. Ocean Engineering, 2020, 217: 107927. doi: 10.1016/j.oceaneng.2020.107927
    [27]
    孟耀, 张秀凤, 陈雨农. 基于改进灰狼算法的船舶数学模型参数辨识[J]. 哈尔滨工程大学学报, 2023, 44(8): 1304-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202308009.htm

    MENG Yao, ZHANG Xiu-feng, CHEN Yu-nong. Parameter identification of a ship mathematical model based on the modified grey wolf algorithm[J]. Journal of Harbin Engineering University, 2023, 44(8): 1304-1312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202308009.htm
    [28]
    侯先瑞. 基于支持向量回归机的波浪中船舶运动辨识建模研究[D]. 上海: 上海交通大学, 2017.

    HOU Xian-rui. Identification modeling of ship motions in waves based on support vector regression[D]. Shanghai: Shanghai Jiao Tong University, 2017. (in Chinese)
    [29]
    张心光. 基于支持向量回归机的船舶操纵运动在线辨识建模[J]. 船舶工程, 2019, 41(3): 98-101. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201903022.htm

    ZHANG Xin-guang. Online identification modeling of ship manoeuvring motion using support vector regression[J]. Ship Engineering, 2019, 41(3): 98-101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB201903022.htm
    [30]
    WANG Zi-hao, XU Hai-tong, XIA Li, et al. Kernel-based support vector regression for nonparametric modeling of ship maneuvering motion[J]. Ocean Engineering, 2020, 216: 107994. doi: 10.1016/j.oceaneng.2020.107994
    [31]
    SHEN Wen-he, YAO Jiang-xi, HU Xin-jue, et al. Ship dynamics model identification based on semblance least square support vector machine[J]. Ocean Engineering, 2023, 287: 115908. doi: 10.1016/j.oceaneng.2023.115908
    [32]
    董磊, 马翔, 封佳祥, 等. 基于改进LSTM的船舶操纵运动在线预报方法研究[J]. 中国造船, 2023, 64(2): 184-198. doi: 10.3969/j.issn.1000-4882.2023.02.017

    DONG Lei, MA Xiang, FENG Jia-xiang, et al. Online prediction method of ship maneuvering motion based on improved long-short term memory neural network[J]. Shipbuilding of China, 2023, 64(2): 184-198. (in Chinese) doi: 10.3969/j.issn.1000-4882.2023.02.017
    [33]
    LUO Wei-lin, SOARES C G, ZOU Zao-jian. Parameter identification of ship maneuvering model based on support vector machines and particle swarm optimization[J]. Journal of Offshore Mechanics and Arctic Engineering, 2016, 138(3): 031101. doi: 10.1115/1.4032892
    [34]
    刘长德, 顾宇翔, 张进丰. 基于小波滤波和LSTM神经网络的船舶运动极短期预报研究[J]. 船舶力学, 2021, 25(3): 299-310. doi: 10.3969/j.issn.1007-7294.2021.03.005

    LIU Chang-de, GU Yu-xiang, ZHANG Jin-feng. Extreme short-term prediction of ship motions based on wavelet filter and LSTM neural network[J]. Journal of Ship Mechanics, 2021, 25(3): 299-310. (in Chinese) doi: 10.3969/j.issn.1007-7294.2021.03.005
    [35]
    PARAND K, AGHAEI A A, JANI M, et al. Parallel LS-SVM for the numerical simulation of fractional Volterra's population model[J]. Alexandria Engineering Journal, 2021, 60(6): 5637-5647. doi: 10.1016/j.aej.2021.04.034
    [36]
    沈文君, 赵志娟, 刘利琴, 等. 波浪周期对小型船舶动力响应的影响研究[J]. 船舶力学, 2022, 26(3): 342-352. doi: 10.3969/j.issn.1007-7294.2022.03.004

    SHEN Wen-jun, ZHAO Zhi-juan, LIU Li-qin, et al. Research of wave period effect on the dynamic response characteristics of a small ship[J]. Journal of Ship Mechanics, 2022, 26(3): 342-352. (in Chinese) doi: 10.3969/j.issn.1007-7294.2022.03.004
    [37]
    张腾, 任俊生, 梅天龙. 基于傅汝德-克雷洛夫力非线性法的规则波浪中船舶运动数学模型[J]. 交通运输工程学报, 2020, 20(2): 77-87. doi: 10.19818/j.cnki.1671-1637.2020.02.007

    ZHANG Teng, REN Jun-sheng, MEI Tian-long. Mathematical model of ship motions in regular waves based on Froude-Krylov force nonlinear method[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 77-87. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.007
    [38]
    钱小斌, 尹勇, 张秀凤, 等. 海上不规则波浪扰动对船舶运动的影响[J]. 交通运输工程学报, 2016, 16(3): 116-124. doi: 10.3969/j.issn.1671-1637.2016.03.014

    QIAN Xiao-bin, YIN Yong, ZHANG Xiu-feng, et al. Influence of irregular disturbance of sea wave on ship motion[J]. Journal of Traffic and Transportation Engineering, 2016, 16(3): 116-124. (in Chinese) doi: 10.3969/j.issn.1671-1637.2016.03.014
    [39]
    江洪, 孙士尉, 魏常进, 等. 智能航运船岸通信系统设计与网络数据传输优化[J]. 舰船科学技术, 2020, 42(20): 178-180. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202020061.htm

    JIANG Hong, SUN Shi-wei, WEI Chang-jin, et al. Design of intelligent shipping ship-shore communication system and optimization of network data transmission[J]. Ship Science and Technology, 2020, 42(20): 178-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202020061.htm
    [40]
    SUTULO S, GUEDES SOARES C. An algorithm for offline identification of ship manoeuvring mathematical models from free-running tests[J]. Ocean Engineering, 2014, 79: 10-25. doi: 10.1016/j.oceaneng.2014.01.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (220) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return