Citation: | ZHANG Miao, HE Yi-juan, YANG Bo-yu, LUO Zheng-wei, LU Wan-li, TANG Tao, LI Kai-cheng, LYU Ji-dong. Trajectory prediction method for high-speed train group tracking operation based on LSTM-KF model[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 296-310. doi: 10.19818/j.cnki.1671-1637.2024.03.021 |
[1] |
张淼, 张琦, 张梓轩. 基于Q学习算法的高速铁路列车节能优化研究[J]. 铁道运输与经济, 2019, 41(12): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201912023.htm
ZHANG Miao, ZHANG Qi, ZHANG Zi-xuan. A study on energy-saving optimization for high-speed railways train based on Q-learning algorithm[J]. Railway Transport and Economy, 2019, 41(12): 111-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201912023.htm
|
[2] |
宁滨, 莫志松, 李开成. 高速铁路信号系统智能技术应用及发展[J]. 铁道学报, 2019, 41(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201903002.htm
NING Bin, MO Zhi-song, LI Kai-cheng. Application and development of intelligent technologies for high-speed railway signaling system[J]. Journal of the China Railway Society, 2019, 41(3): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201903002.htm
|
[3] |
张淼, 赵阳, 曲以胜, 等. 青藏铁路移动闭塞列控安全技术方案研究[J]. 铁道运输与经济, 2020, 42(12): 77-82, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS202012013.htm
ZHANG Miao, ZHAO Yang, QU Yi-sheng, et al. Safety technology plan of movable block train control system for Qinghai-Tibet Railway[J]. Railway Transport and Economy, 2020, 42(12): 77-82, 88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS202012013.htm
|
[4] |
FELEZ J, VAQUERO-SERRANO M A. Virtual coupling in railways: a comprehensive review[J]. Machines, 2023, 11(5): 521. doi: 10.3390/machines11050521
|
[5] |
FLAMMINI F, MARRONE S, NARDONE R, et al. Towards railway virtual coupling[C]//IEEE. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference. New York: IEEE, 2018: 8607523.
|
[6] |
DI MEO C, DI VAIO M, FLAMMINI F, et al. ERTMS/ETCS virtual coupling: proof of concept and numerical analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(6): 2545-2556. doi: 10.1109/TITS.2019.2920290
|
[7] |
ZHAO H, DAI X W, ZHOU P, et al. Distributed robust event-triggered control strategy for multiple high-speed trains with communication delays and input constraints[J]. IEEE Transactions on Control of Network Systems, 2020, 7(3): 1453-1464. doi: 10.1109/TCNS.2020.2979862
|
[8] |
HE Y J, LYU J D, ZHANG D Q, et al. Trajectory prediction of urban rail transit based on long short-term memory network[C]//IEEE. 2021 IEEE International Intelligent Transportation Systems Conference. New York: IEEE, 2021: 173112.
|
[9] |
YIN J T, NING C H, TANG T. Data-driven models for train control dynamics in high-speed railways: LAG-LSTM for train trajectory prediction[J]. Information Sciences, 2022, 600: 377-400. doi: 10.1016/j.ins.2022.04.004
|
[10] |
LIN C F, ULSOY A G, LEBLANC D J. Vehicle dynamics and external disturbance estimation for vehicle path prediction[J]. IEEE Transactions on Control Systems Technology, 2000, 8(3): 508-518. doi: 10.1109/87.845881
|
[11] |
DE MIGUEL M Á, ARMINGOL J M, GARCÍA F. Vehicles trajectory prediction using recurrent VAE network[J]. IEEE Access, 2022, 10: 32742-32749. doi: 10.1109/ACCESS.2022.3161661
|
[12] |
WANG Y, ZHANG D X, LIU Y, et al. Trajectory forecasting with neural networks: an empirical evaluation and a new hybrid model[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4400-4409. doi: 10.1109/TITS.2019.2943055
|
[13] |
LYTRIVIS P, THOMAIDIS G, AMDITIS A. Cooperative path prediction in vehicular environments[C]//IEEE. 11th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2008: 4732629.
|
[14] |
周兵, 赵婳, 吴晓建, 等. 基于外部动态环境的汽车碰撞危险估计算法研究[J]. 汽车工程, 2019, 41(3): 307-312. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201903010.htm
ZHOU Bing, ZHAO Hua, WU Xiao-jian, et al. A study on vehicle collision risk estimation algorithm based on external dynamic environment[J]. Automotive Engineering, 2019, 41(3): 307-312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201903010.htm
|
[15] |
TONG Q, HU J Q, CHEN Y L, et al. Long-term trajectory prediction model based on transformer[J]. IEEE Access, 2023, 11: 143695-143703. doi: 10.1109/ACCESS.2023.3343800
|
[16] |
REITER R, NURKANOVI AC'G A, BERNARDINI D, et al. A long-short-term mixed-integer formulation for highway lane change planning[J]. IEEE Transactions on Intelligent Vehicles, 2024, DOI: 10.1109/TIV.2024.3398805.
|
[17] |
HUANG J, TAN H S. Vehicle future trajectory prediction with a DGPS/INS-based positioning system[C]//IEEE. 2006 American Control Conference. New York: IEEE, 2006: 1657655.
|
[18] |
张淼, 张琦, 刘文韬, 等. 一种基于策略梯度强化学习的列车智能控制方法[J]. 铁道学报, 2020, 42(1): 69-75. doi: 10.3969/j.issn.1001-8360.2020.01.010
ZHANG Miao, ZHANG Qi, LIU Wen-tao, et al. A policy-based reinforcement learning algorithm for intelligent train control[J]. Journal of the China Railway Society, 2020, 42(1): 69-75. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.01.010
|
[19] |
SORSTEDT J, SVENSSON L, SANDBLOM F, et al. A new vehicle motion model for improved predictions and situation assessment[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1209-1219. doi: 10.1109/TITS.2011.2160342
|
[20] |
XU Y, YANG J, DU S Y. CF-LSTM: cascaded feature-based long short-term networks for predicting pedestrian trajectory[C]//AAAI. 34th AAAI Conference on Artificial Intelligence. Washington DC: AAAI, 2020: 12541-12548.
|
[21] |
LI R M, ZHONG Z R, CHAI J, et al. Autonomous vehicle trajectory combined prediction model based on CC-LSTM[J]. International Journal of Fuzzy Systems, 2022, 24(8): 3798-3811. doi: 10.1007/s40815-022-01288-x
|
[22] |
XING Y, LYU C, CAO D P. Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1341-1352. doi: 10.1109/TVT.2019.2960110
|
[23] |
KIM B D, KANG C M, KIM J, et al. Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network[C]//IEEE. 20th IEEE International Conference on Intelligent Transportation Systems. New York: IEEE, 2017: 399-404.
|
[24] |
DEQUAIRE J, RAO D, ONDRUSKA P, et al. Deep tracking on the move: learning to track the world from a moving vehicle using recurrent neural networks[J]. arXiv.
|
[25] |
XIE L, WEI Z L, DING D L, et al. Long and short term maneuver trajectory prediction of UCAV based on deep learning[J]. IEEE Access, 2021, 9: 32321-32340. doi: 10.1109/ACCESS.2021.3060783
|
[26] |
DEO N, TRIVEDI M M. Multi-modal trajectory prediction of surrounding vehicles with maneuver based LSTMs[C]//IEEE. 2018 IEEE Intelligent Vehicles Symposium. New York: IEEE, 2018: 8500493.
|
[27] |
ZHAO Z, CHEN W, WU X, et al. LSTM network: a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11(2): 68-75. doi: 10.1049/iet-its.2016.0208
|
[28] |
YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. doi: 10.1162/neco_a_01199
|
[29] |
HIGGINS W T. A comparison of complementary and Kalman filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 1975, 11(3): 321-325.
|
[30] |
ZHAO H, DAI X W, ZHANG Q, et al. Robust event-triggered model predictive control for multiple high-speed trains with switching topologies[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 4700-4710. doi: 10.1109/TVT.2020.2974979
|