Volume 24 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
YUAN Yu-peng, XU Chao-yuan, LI Na, TANG Dao-gui, YUAN Cheng-qing, ZHONG Xiao-hui, YAN Xin-ping. Review on multi-energy integration systems in ports[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 83-103. doi: 10.19818/j.cnki.1671-1637.2024.04.007
Citation: YUAN Yu-peng, XU Chao-yuan, LI Na, TANG Dao-gui, YUAN Cheng-qing, ZHONG Xiao-hui, YAN Xin-ping. Review on multi-energy integration systems in ports[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 83-103. doi: 10.19818/j.cnki.1671-1637.2024.04.007

Review on multi-energy integration systems in ports

doi: 10.19818/j.cnki.1671-1637.2024.04.007
Funds:

National Key Research and Development Program of China 2021YFB2601601

More Information
  • Author Bio:

    YUAN Yu-peng(1980-), male, associate professor, PhD, ypyuan@whut.edu.cn

    YAN Xin-ping(1959-), male, academician of Chinese Academy of Engineering, professor, PhD, xpyan@whut.edu.cn

  • Received Date: 2024-04-13
    Available Online: 2024-09-26
  • Publish Date: 2024-08-28
  • The current application statuses of wind, solar, hydrogen, and other clean energy in global ports were investigated. A variety of natural resource endowment characteristics were assessed. Based on the types of energy consumption and load characteristics at ports, three microgrid system architectures including DC grid connection, AC grid connection, and AC/DC hybrid grid connection were analyzed, as well as the characteristics of various energy storage methods. In view of the comprehensive architecture of a multi-energy integration system featuring wind, solar and hydrogen storage and the characteristics of its "source-grid-load-storage" network architecture, the key technologies of integration modes, matching methods, energy capture, security guarantees, and operational controls for the multi-energy integration system were summarized. Research results show that the application of clean energy at ports is characterized by single application form and low utilization rate. The energy demand forms of port load are diverse. The application of a multi-energy integration system composed of wind, solar and hydrogen storage units can satisfy the load demand at ports and overcome the shortcomings of single energy source. The mode and architecture of multi-energy integration at ports need to be designed according to the actual situation of the port. Generally, the multi-criteria decision-making approach can be used to determine the optimal energy integration mode, and the multi-objective optimization is adopted to determine the capacity of energy by comprehensively considering security, environment, economy, and other factors. In terms of the selection of specific energy types, wind and solar power generation combined with hydrogen production through the electrolysis of water is partly suitable for practical application scenarios at ports. However, it is necessary to study the adaptation of key equipment and security technologies for hydrogen production, refueling, storage, and supply. Both load and power generation from wind and solar energy are stochastic. Therefore, it is necessary to study new multi-level energy management strategies to optimize the energy dispatching and load balance of the multi-energy integration system and ensure that the system can operate safely, stably, and economically.

     

  • loading
  • [1]
    严新平, 张金奋, 吴兵. 交通强国战略下水运安全挑战与展望[J]. 长江技术经济, 2018, 2(3): 39-43.

    YAN Xin-ping, ZHANG Jin-fen, WU Bing. Challenges and prospects of waterway shippment safety under the strategy of strength in transportation[J]. Technology and Economy of Changjiang, 2018, 2(3): 39-43. (in Chinese)
    [2]
    严新平, 贺亚鹏, 贺宜, 等. 水路交通技术发展趋势[J]. 交通运输工程学报, 2022, 22(4): 1-9. doi: 10.19818/j.cnki.1671-1637.2022.04.001

    YAN Xin-ping, HE Ya-peng, HE Yi, et al. Development trends of waterway transportation technology[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 1-9. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.04.001
    [3]
    Marine Environment Protection Committee. Report of the marine environment protection committee on its sixty-second session[R]. London: Marine Environment Protection Committee, 2011.
    [4]
    徐国平, 潘欣竹. 国际海运碳减排国际法制和行业规则[J]. 浙江海洋大学学报(人文科学版), 2022, 39(5): 7-14.

    XU Guo-ping, PAN Xin-zhu. On international law and industrial rules for reduction of carbon emission from international shipping[J]. Journal of Zhejiang Ocean University (Humanities Sciences), 2022, 39(5): 7-14. (in Chinese)
    [5]
    谢梦强. 船舶排放对我国港口大气污染法律问题研究[D]. 大连: 大连海事大学, 2020.

    XIE Meng-qiang. A study on the legal problems of port air pollution in China from ship discharge[D]. Dalian: Dalian Maritime University, 2020. (in Chinese)
    [6]
    禹湘, 娄峰, 谭畅. 基于CIE-CEAM模型的中国工业"双碳"路径模拟[J]. 中国人口·资源与环境, 2022, 32(7): 49-56.

    YU Xiang, LOU Feng, TAN Chang. A simulation study of the pathway of achieving the 'dual carbon' goals in China's industrial sectors based on the CIE-CEAM Model[J]. China Population, Resources and Environment, 2022, 32(7): 49-56. (in Chinese)
    [7]
    王卓妮, 巢清尘, 张黎黎. "十四五"时期中国省级"双碳"目标评估和政策分析[J]. 环境保护, 2023, 51(4): 49-54.

    WANG Zhuo-ni, CHAO Qing-chen, ZHANG Li-li. Assessment and policy analysis of carbon peaking and carbon neutrality targets at provincial level in China during the 14th Five-Year Plan period[J]. Environmental Protection, 2023, 51(4): 49-54. (in Chinese)
    [8]
    CHEN Ji-hong, XIONG Wen-jing, XU Lang, et al. Evolutionary game analysis on supply side of the implement shore-to-ship electricity[J]. Ocean and Coastal Management, 2021, 215: 105926. doi: 10.1016/j.ocecoaman.2021.105926
    [9]
    袁裕鹏, 王康豫, 尹奇志, 等. 船舶航速优化综述[J]. 交通运输工程学报, 2020, 20(6): 18-34. doi: 10.19818/j.cnki.1671-1637.2020.06.002

    YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, et al. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.002
    [10]
    KENAN N, JEBALI A, DIABAT A. The integrated quay crane assignment and scheduling problems with carbon emissions considerations[J]. Computers and Industrial Engineering, 2022, 165: 107734. doi: 10.1016/j.cie.2021.107734
    [11]
    ZHAO Nan, SCHOFIELD N, NIU Wang-qiang. Energy storage system for a port crane hybrid power-train[J]. IEEE Transactions on Transportation Electrification, 2016, 2(4): 480-492. doi: 10.1109/TTE.2016.2562360
    [12]
    ALASALI F, HABEN S, HOLDERBAUM W. Energy management systems for a network of electrified cranes with energy storage[J]. International Journal of Electrical Power and Energy Systems, 2019, 106: 210-222. doi: 10.1016/j.ijepes.2018.10.001
    [13]
    AHAMAD N B, SU Chun-lien, XIAO Zhao-xia, et al. Energy harvesting from harbor cranes with flywheel energy storage systems[J]. IEEE Transactions on Industry Applications, 2019, 55(4): 3354-3364. doi: 10.1109/TIA.2019.2910495
    [14]
    PENG Yun, WANG Wen-yuan, SONG Xiang-qun, et al. Optimal allocation of resources for yard crane network management to minimize carbon dioxide emissions[J]. Journal of Cleaner Production, 2016, 131: 649-658. doi: 10.1016/j.jclepro.2016.04.120
    [15]
    OLABI A G, ALI ABDELKAREEM M. Renewable energy and climate change[J]. Renewable and Sustainable Energy Reviews, 2022, 158: 112111. doi: 10.1016/j.rser.2022.112111
    [16]
    MISRA A, VENKATARAMANI G, GOWRISHANKAR S, et al. Renewable energy based smart microgrids-a pathway to green port development[J]. Strategic Planning for Energy and the Environment, 2018, 37(2): 17-32.
    [17]
    李全生, 卓卉. 基于协同供能的轨道交通能源转型发展路径研究[J]. 北京交通大学学报(社会科学版), 2022, 21(3): 53-60.

    LI Quan-sheng, ZHUO Hui. Research on the development path of rail transit energy based on synergistic energy[J]. Journal of Beijing Jiaotong University(Social Sciences Edition), 2022, 21(3): 53-60. (in Chinese)
    [18]
    ACCIARO M, GHIARA H, CUSANO M. Energy management in seaports: a new role for port authorities[J]. Energy Policy, 2014, 71: 4-12. doi: 10.1016/j.enpol.2014.04.013
    [19]
    BARRETT S. Valencia will be first port in Europe to use hydrogen energy in its container terminals[J]. Fuel Cells Bulletin, 2019, 2019(2): 3.
    [20]
    方斯顿, 赵常宏, 丁肇豪, 等. 面向碳中和的港口综合能源系统(一): 典型系统结构与关键问题[J]. 中国电机工程学报, 2023, 43(1): 114-135.

    FANG Si-dun, ZHAO Chang-hong, DING Zhao-hao, et al. Port integrated energy systems toward carbon neutrality(Ⅰ): typica topology and key problems[J]. Proceedings of the CSEE, 2023, 43(1): 114-135. (in Chinese)
    [21]
    方斯顿, 赵常宏, 丁肇豪, 等. 面向碳中和的港口综合能源系统(二): 能源-交通融合中的柔性资源与关键技术[J]. 中国电机工程学报, 2023, 43(3): 950-969.

    FANG Si-dun, ZHAO Chang-hong, DING Zhao-hao, et al. Port integrated energy systems toward carbon neutrality(Ⅱ): flexible resources and key technologies in energy-transportation integration[J]. Proceedings of the CSEE, 2023, 43(3): 950-969. (in Chinese)
    [22]
    王思佳. 为什么是甲醇?[J]. 中国船检, 2022(1): 38-42.

    WANG Si-jia. Why methanol?[J]. China Ship Survey, 2022(1): 38-42. (in Chinese)
    [23]
    王轩, 张晋恺. 新一代智能集装箱码头绿色零碳设计探讨[J]. 港工技术, 2022, 59(4): 94-96, 111.

    WANG Xuan, ZHANG Jin-kai. Discussion on green design of new-generation intelligent container terminal with zero-carbon emission[J]. Port Engineering Technology, 2022, 59(4): 94-96, 111. (in Chinese)
    [24]
    周文峰, 张凯, 祖巧红, 等. 风电和光伏在绿色港口建设中的应用[J]. 港口装卸, 2023(2): 36-38.

    ZHOU Wen-feng, ZHANG Kai, ZU Qiao-hong, et al. Application of wind power and photovoltaics in green port construction[J]. Port Operation, 2023(2): 36-38. (in Chinese)
    [25]
    仲昭林. 自动化集装箱码头设备配置与作业调度集成优化[D]. 青岛: 青岛大学, 2022.

    ZHONG Zhao-lin. Automated container terminal equipment configuration and operation scheduling integration optimization[D]. Qingdao: Qingdao University, 2022. (in Chinese)
    [26]
    杜小云. 我国低碳城市建设水平时空演变规律及提升策略研究[D]. 重庆: 重庆大学, 2021.

    DU Xiao-yun. Research on spatio-temporal evolution and promotion strategy of low carbon city practice in China[D]. Chongqing: Chongqing University, 2021. (in Chinese)
    [27]
    岑琪. 宁波舟山港加速推进碳达峰碳中和行动[J]. 中国港口, 2021, 354(12): 19-21.

    CEN Qi. Ningbo Zhoushan Port accelerated the action of carbon peaking and carbon neutrality[J]. China Ports, 2021, 354(12): 19-21. (in Chinese)
    [28]
    BALI S, THANGALAKSHMI S, RAJOO B. Renewable energy options for seaports[C]//IEEE. OCEANS 2022 Chennai. New York: IEEE, 2022: 1-6.
    [29]
    ROFHIWA T, LESEDI M. Development of an energy management strategy for port cranes[C]//IEEE. IECON 2021-47th Annual Conference of the IEEE Industrial Electronics Society. New York: IEEE, 2021: 1-6.
    [30]
    杨卫华, 蒋康乐, 孙文叶. 不同应用规模下风光互补发电储能系统优化与设计[J]. 节能, 2017, 36(10): 40-43.

    YANG Wei-hua, JIANG Kang-le, SUN Wen-ye. Optimization and design under different application scale on wind/photovoltaic hybrid generation system[J]. Energy Conservation, 2017, 36(10): 40-43. (in Chinese)
    [31]
    刘悦璋. 多能源微电网控制策略研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.

    LIU Yue-zhang. Research on control strategy of multi-energy microgrid[D]. Harbin: Harbin Engineering University, 2021. (in Chinese)
    [32]
    姜碧佳, 叶远茂. 直流微电网的控制技术综述[J]. 广东电力, 2020, 33(5): 1-10.

    JIANG Bi-jia, YE Yuan-mao. Overview on control techniques of DC micro-grid[J]. Guangdong Electric Power, 2020, 33(5): 1-10. (in Chinese)
    [33]
    蔡欣灵, 张前. 交直流混合微电网的拓扑结构与重构综述[J]. 自动化应用, 2018(9): 79-82.

    CAI Xin-ling, ZHANG Qian. A review of the topology and reconstruction of AC/DC hybrid microgrids[J]. Automation Application, 2018(9): 79-82. (in Chinese)
    [34]
    李滨, 陶思思, 张杨杨, 等. 含多种可再生能源发电联盟的优化运行[J]. 电力系统及其自动化学报, 2021, 33(6): 84-92.

    LI Bin, TAO Si-si, ZHANG Yang-yang, et al. Optimized operation of power generation alliance with multiple renewable energy sources[J]. Proceedings of the CSU-EPSA, 2021, 33(6): 84-92. (in Chinese)
    [35]
    FANG Liang, XU Xiao-yan, XIA Jun, et al. Reliability assessment of the port power system based on integrated energy hybrid system[J]. Bulletin of the Polish Academy of Sciences-Technical Sciences, 2022, 70(2): 1-12.
    [36]
    浦盛斌. 风光储联合发电系统建模与协同优化控制研究[D]. 上海: 上海交通大学, 2016.

    PU Sheng-bin. Research on wind-PV-storage hybrid system model and coordinated control strategy[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese)
    [37]
    江苏江阴港港口集团股份有限公司. 风光互补供电系统技术研究及应用[J]. 交通节能与环保, 2022, 18(增1): 54-57.

    Jiangsu Jiangyin Port Group Co., Ltd. Technology research and application of wind-solar hybrid power supply system[J]. Energy Conservation and Enviromental Protection in Transportation, 2022, 18(S1): 54-57. (in Chinese)
    [38]
    杨文强, 邢小文, 覃姝仪, 等. 大规模风/光互补制储氢系统协调控制策略研究[J]. 电力电子技术, 2020, 54(12): 24-27, 55.

    YANG Wen-qiang, XING Xiao-wen, QIN Shu-yi, et al. Research on coordinated control strategy of large-scale wind/solar complementary hydrogen production and storage system[J]. Power Electronics, 2020, 54(12): 24-27, 55. (in Chinese)
    [39]
    荆涛, 陈庚, 王子豪, 等. 风光互补发电耦合氢储能系统研究综述[J]. 中国电力, 2022, 55(1): 75-83.

    JING Tao, CHEN Geng, WANG Zi-hao, et al. Research overview on the integrated system of wind-solar hybrid power generation coupled with hydrogen-based energy storage[J]. Electric Power, 2022, 55(1): 75-83. (in Chinese)
    [40]
    DOUGLAS T. Dynamic modelling and simulation of a solar-PV hybrid battery and hydrogen energy storage system[J]. Journal of Energy Storage, 2016, 7: 104-114.
    [41]
    李宝意. 大连湾港区风光互补发电系统设计[D]. 大连: 大连理工大学, 2018.

    LI Bao-yi. Design of wind solar hybrid power generation system in Dalian bay port area[D]. Dalian: Dalian University of Technology, 2018. (in Chinese)
    [42]
    甘勇见. 风光互补供电系统的组成与结构[J]. 中国设备工程, 2019(9): 146-148.

    GAN Yong-jian. The composition and structure of wind-solar complementary power supply system[J]. China Plant Engineering, 2019(9): 146-148. (in Chinese)
    [43]
    ZHAO Fang, ZHU Hai-yun, CHEN Long. Research of Grid-connected inverter based on SVPWM control strategy[C]// MCEI. Proceedings of the 2016 6th International Conference on Mechatronics, Computer and Education Informationization (MCEI 2016). Paris: MCEI, 2016.
    [44]
    亢苏占. 基于微电网的多功能并网逆变器控制策略研究[D]. 重庆: 重庆理工大学, 2018.

    KANG Su-zhan. Research on control strategy of multi-function grid-connected inverter based on microgrid[D]. Chongqing: Chongqing University of Technolog, 2018. (in Chinese)
    [45]
    顾后生. 交直流微电网运行与控制研究[D]. 天津: 天津大学, 2019.

    GU Hou-sheng. Research on operation and control of AC/DC microgrids[D]. Tianjin: Tianjin University, 2019. (in Chinese)
    [46]
    辛乳江, 魏勇. 光伏发电并网关键技术及对策探究[J]. 工业技术创新, 2017, 4(1): 128-130, 139.

    XIN Ru-jiang, WEI Yong. Investigations on grid connection technology for photovoltaic power generation and its countermeasures[J]. Industrial Technology Innovation, 2017, 4(1): 128-130, 139. (in Chinese)
    [47]
    袁裕鹏, 袁成清, 徐洪磊, 等. 我国水路交通与能源融合发展路径探析[J]. 中国工程科学, 2022, 24(3): 184-194.

    YUAN Yu-peng, YUAN Cheng-qing, XU Hong-lei, et al. Pathway for integrated development of waterway transportation and energy in China[J]. Strategic Study of CAE, 2022, 24(3): 184-194. (in Chinese)
    [48]
    赵瑞嘉, 谢燕, 宿博涵, 等. 集装箱港口碳排放量及碳达峰时间测算方法[J]. 大连海事大学学报, 2021, 47(4): 56-64.

    ZHAO Rui-jia, XIE Yan, SU Bo-han, et al. Carbon emission and carbon peak time calculation method of container port[J]. Journal of Dalian Maritime University, 2021, 47(4): 56-64. (in Chinese)
    [49]
    李洪春. 港口带式输送机节能研究与设计初探[J]. 中国设备工程杂志, 2017(18): 72-73.

    LI Hong-chun. Preliminary study on energy-saving research and design of port belt conveyor[J]. China Plant Engineering, 2017(18): 72-73. (in Chinese)
    [50]
    IRIS Ç, LAM J S L. A review of energy efficiency in ports: operational strategies, technologies and energy management systems[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 170-182.
    [51]
    马一鸣. 直流微电网中能量协调控制策略研究[D]. 扬州: 扬州大学, 2022.

    MA Yi-ming. Research on energy coordination control strategy in DC microgrid[D]. Yangzhou: Yangzhou University, 2022. (in Chinese)
    [52]
    ATES M, CHEBIL A, YORUK O, et al. Reliability of electrode materials for supercapacitors and batteries in energy storage applications: a review[J]. Ionics, 2022, 28(1): 27-52.
    [53]
    赵超恩. 基于多能互补的风光储氢一体化可再生系统设计[J]. 节能, 2022, 41(8): 51-54.

    ZHAO Chao-en. Design of integrated renewable system for wind, solar and hydrogen storage based on multi-energy complementarity[J]. Energy Conservation, 2022, 41(8): 51-54. (in Chinese)
    [54]
    PAKHIRA S, MENDOZA-CORTES J L. Quantum nature in the interaction of molecular hydrogen with porous materials: implications for practical hydrogen storage[J]. The Journal of Physical Chemistry C, 2020, 124(11): 6454-6460.
    [55]
    殷缶, 梅深. 比亚迪、洛杉矶港推出全方位绿色港区示范项目[J]. 水道港口, 2016, 37(4): 330.

    YIN Fou, MEI Shen. BYD and the Port of Los Angeles launched a comprehensive green port area demonstration project[J]. Journal of Waterway and Harbor, 2016, 37(4): 330. (in Chinese)
    [56]
    张波, 项丽媛, 王彦超. 推动绿色能源、储能及综合运营一体化的船舶岸电运营方案刍议[J]. 中国海事, 2021, 197(12): 39-41, 49.

    ZHANG Bo, XIANG Li-yuan, WANG Yan-chao. Brief discussion on promoting green energy, energy storage and comprehensive operation integrated ship shore power operation plan[J]. China Maritime Safety, 2021, 197(12): 39-41, 49. (in Chinese)
    [57]
    盛戈皞, 钱勇, 罗林根, 等. 面向新型电力系统的电力设备运行维护关键技术及其应用展望[J]. 高电压技术, 2021, 47(9): 3072-3084.

    SHENG Ge-hao, QIAN Yong, LUO Lin-gen, et al. Key technologies and application prospects for operation and maintenance of power equipment in new type power system[J]. High Voltage Engineering, 2021, 47(9): 3072-3084. (in Chinese)
    [58]
    KOTRIKLA A M, LILAS T, NIKITAKOS N. Abatement of air pollution at an Aegean Island Port utilizing shore side electricity and renewable energy[J]. Marine Policy, 2017, 75: 238-248.
    [59]
    GUTIERREZ-ROMERO J E, ESTEVE-PÉREZ J, ZAMORA B. Implementing onshore power supply from renewable energy sources for requirements of ships at berth[J]. Applied Energy, 2019, 255: 113883.
    [60]
    VICHOS E, SIFAKIS N, TSOUTSOS T. Challenges of integrating hydrogen energy storage systems into nearly zero-energy ports[J]. Energy, 2022, 241: 122878.
    [61]
    ODOI-YORKE F, OWUSU J J, ATEPOR L. Composite decision- making algorithms for optimisation of hybrid renewable energy systems: Port of Takoradi as a case study[J]. Energy Reports, 2022, 8: 2131-2150.
    [62]
    ELKADEEM M R, YOUNES A, SHARSHIR S W, et al. Sustainable siting and design optimization of hybrid renewable energy system: a geospatial multi-criteria analysis[J]. Applied Energy, 2021, 295: 117071.
    [63]
    SALAMEH T, SAYED E T, ALI ABDELKAREEM M, et al. Optimal selection and management of hybrid renewable energy system: Neom city as a case study[J]. Energy Conversion and Management, 2021, 244: 114434.
    [64]
    REZK H, MUKHAMETZYANOV I Z, AL-DHAIFALLAH M, et al. Optimal selection of hybrid renewable energy system using multi-criteria decision-making algorithms[J]. Computers, Materials and Continua, 2021, 68(2): 2001-2027.
    [65]
    ABU BAKAR N N, GUERRERO J M, VASQUEZ J C, et al. Optimal configuration and sizing of seaport microgrids including renewable energy and cold ironing—the port of Aalborg case study[J]. Energies, 2022, 15(2): 431.
    [66]
    AHAMAD N B, OTHMAN M, VASQUEZ J C, et al. Optimal sizing and performance evaluation of a renewable energy based microgrid in future seaports[C]//IEEE. 2018 IEEE International Conference on Industrial Technology. New York: IEEE, 2018: 1043-1048.
    [67]
    WANG Wen-yuan, PENG Yun, LI Xiang-da, et al. A two-stage framework for the optimal design of a hybrid renewable energy system for port application[J]. Ocean Engineering, 2019, 191: 106555.
    [68]
    LI Xiang-da, PENG Yun, WANG Wen-yuan, et al. A method for optimizing installation capacity and operation strategy of a hybrid renewable energy system with offshore wind energy for a green container terminal[J]. Ocean Engineering, 2019, 186: 106125.
    [69]
    WANG Li-fen, LIANG Cheng-ji, SHI Jian, et al. A bilevel hybrid economic approach for optimal deployment of onshore power supply in maritime ports[J]. Applied Energy, 2021, 292: 116892.
    [70]
    CHEN Ying-feng, WANG Rui, MING Meng-jun, et al. Constraint multi-objective optimal design of hybrid renewable energy system considering load characteristics[J]. Complex and Intelligent Systems, 2022, 8(2): 803-817.
    [71]
    ZHANG Yi, SUN He-xu, TAN Jian-xin, et al. Capacity configuration optimization of multi-energy system integrating wind turbine/photovoltaic/hydrogen/battery[J]. Energy, 2022, 252: 124046.
    [72]
    GANJEFAR S, GHASSEMI A A, AHMADI M M. Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network[J]. Energy, 2014, 67: 444-453.
    [73]
    陈佳, 岑丽辉, 曹安康, 等. 一种考虑风力机实际大转动惯量的改进最优转矩法[J]. 太阳能学报, 2021, 42(6): 297-303.

    CHEN Jia, CEN Li-hui, CAO An-kang, et al. An improved optimal torque control of wind turbine considering actual large rotational inertia[J]. Acta Energiae Solaris Sinica, 2021, 42(6): 297-303. (in Chinese)
    [74]
    李悦强, 蔡旭, 贾锋. 大型风电机组最大功率曲线自校正方法[J]. 电网技术, 2017, 41(10): 3269-3276.

    LI Yue-qiang, CAI Xu, JIA Feng. Self-correction method for maximum power curves of large wind turbines[J]. Power System Technology, 2017, 41(10): 3269-3276. (in Chinese)
    [75]
    冯月, 王利强, 王啸天, 等. 基于GPS定位算法的双轴轨迹自动太阳能追踪系统[J]. 仪器仪表用户, 2022, 29(1): 15-18.

    FENG Yue, WANG Li-qiang, WANG Xiao-tian, et al. Dual-axis trajectory automatic solar tracking system based on GPS positioning algorithm[J]. Instrumentation Users, 2022, 29(1): 15-18. (in Chinese)
    [76]
    王桥莉, 张文浪. 太阳能发电系统MPPT控制策略[J]. 科技与创新, 2022(9): 70-72, 77.

    WANG Qiao-li, ZHNAG Wen-lang. MPPT control strategy for solar power generation system[J]. Science and Technology and Innovation, 2022(9): 70-72, 77. (in Chinese)
    [77]
    仝昊. 基于CAHHO算法的光伏阵列MPPT控制研究[D]. 阜新: 辽宁工程技术大学, 2021.

    TONG Hao. Research on MPPT control of photovoltaic array based on CAHHO algorithm[D]. Fuxin: Liaoning Technical University, 2021. (in Chinese)
    [78]
    李宏俊, 刘薇, 胡开明. 太阳能光伏并网发电中最大功率点追踪的仿真研究[J]. 南方农机, 2022, 53(11): 20-23.

    LI Hong-jun, LIU Wei, HU Kai-ming. Simulation research on maximum power point tracking in solar photovoltaic grid connected power generation[J]. China Southern Agricultural Machinery, 2022, 53(11): 20-23. (in Chinese)
    [79]
    岳应娟, 凤林, 蔡艳平, 等. 交直流混合微电网运行控制技术[J]. 科学技术与工程, 2022, 22(28): 12242-12252.

    YUE Ying-juan, FENG Lin, CAI Yan-ping, et al. AC-DC hybrid microgrid operation control technology[J]. Science Technology and Engineering, 2022, 22(28): 12242-12252. (in Chinese)
    [80]
    ZHANG Bing, ZHANG Sui-xin, Yao Rui, et al. Progress and prospects of hydrogen production: opportunities and challenges[J]. Journal of Electronic Science and Technology, 2021, 19(2): 100080.
    [81]
    WANG Meng-jiao, WANG Gui-zhou, SUN Zhen-xin, et al. Review of renewable energy-based hydrogen production processes for sustainable energy innovation[J]. Global Energy Interconnection, 2019, 2(5): 436-443.
    [82]
    李亮荣, 彭建, 付兵, 等. 碳中和愿景下绿色制氢技术发展趋势及应用前景分析[J]. 太阳能学报, 2022, 43(6): 508-520.

    LI Liang-rong, PENG Jian, FU Bing, et al. Development trend and application prospect of green hydrogen production technologies under carbon neutrality vision[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 508-520. (in Chinese)
    [83]
    CHI Jun, YU Hong-mei. Water electrolysis based on renewable energy for hydrogen production[J]. Chinese Journal of Catalysis, 2018, 39(3): 390-394.
    [84]
    刘易明, 王甫, 王珺, 等. 燃料电池船舶应用形式及其关键技术[J]. 船舶工程, 2021, 43(3): 18-26, 33.

    LIU Yi-ming, WANG Fu, WANG Jun, et al. Application form and its key technology of fuel cell ship[J]. Ship Engineering, 2021, 43(3): 18-26, 33. (in Chinese)
    [85]
    YUE Mei-ling, LAMBERT H, PAHON E, et al. Hydrogen energy systems: a critical review of technologies, applications, trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2021, 146: 111180.
    [86]
    DOS SANTOS K G, ECKERT C T, DE ROSSI E, et al. Hydrogen production in the electrolysis of water in Brazil, a review[J]. Renewable and Sustainable Energy Reviews, 2017, 68: 563-571.
    [87]
    ANWAR S, KHAN F, ZHANG Ya-hui, et al. Recent development in electrocatalysts for hydrogen production through water electrolysis[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32284-32317.
    [88]
    REZAEI M, MOSTAFAEIPOUR A, QOLIPOUR M, et al. Hydrogen production using wind energy from sea water: a case study on southern and northern coasts of Iran[J]. Energy and Environment, 2018, 29(3): 333-357.
    [89]
    SIFAKIS N, VICHOS E, SMARAGDAKIS A, et al. Introducing the cold-ironing technique and a hydrogen-based hybrid renewable energy system into ports[J]. International Journal of Energy Research, 2022, 46(14): 1.
    [90]
    XING Xue-tao, LIN Jin, SONG Yong-hua, et al. Optimization of hydrogen yield of a high-temperature electrolysis system with coordinated temperature and feed factors at various loading conditions: a model-based study[J]. Applied Energy, 2018, 232.
    [91]
    LI Guo-liang, YUAN Ben-feng, GE Min, et al. Capacity configuration optimization of a hybrid renewable energy system with hydrogen storage[J]. International Journal of Green Energy, 2022, 19(14): 1583-1599.
    [92]
    JOUBI A, AKIMOTO Y, OKAJIMA K. A production and delivery model of hydrogen from solar thermal energy in the United Arab Emirates[J]. Energies, 2022, 15(11): 4000.
    [93]
    王雅真, 党文义, 于安峰, 等. 加氢站风险分析及泄漏探测覆盖率评估[J]. 安全与环境学报, 2022, 22(6): 2971-2977.

    WANG Ya-zhen, DANG Wen-yi, YU An-feng, et al. Risk analysis and detector scenario coverage assessment of hydrogen refueling station[J]. Journal of Safety and Environment, 2022, 22(6): 2971-2977. (in Chinese)
    [94]
    洑春干. 氢气长管拖车的操作安全技术[J]. 低温与特气, 2009, 27(1): 37-41.

    FU Chun-gan. The safety technology of operating hydrogen tube trailer[J]. Low Temperature and Specialty Gases, 2009, 27(1): 37-41. (in Chinese)
    [95]
    曹军文, 覃祥富, 耿嘎, 等. 氢气储运技术的发展现状与展望[J]. 石油学报(石油加工), 2021, 37(6): 1461-1478.

    CAO Jun-wen, QIN Xiang-fu, GENG Ga, et al. Current status and prospects of hydrogen storage and transportation technology[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2021, 37(6): 1461-1478. (in Chinese)
    [96]
    熊亚林, 许壮, 王雪颖, 等. 我国加氢基础设施关键技术及发展趋势分析[J]. 储能科学与技术, 2022, 11(10): 3391-3400.

    XIONG Ya-lin, XU Zhuang, WANG Xue-ying, et al. Analysis of key technologies and development trends of hydrogen refueling stations in China[J]. Energy Storage Science and Technology, 2022, 11(10): 3391-3400. (in Chinese)
    [97]
    WANG Shuang-yin, JIANG San-ping. Prospects of fuel cell technologies[J]. National Science Review, 2017, 4(2): 163-166.
    [98]
    JAMIL A, RAFIQ S, IQBAL T, et al. Current status and future perspectives of proton exchange membranes for hydrogen fuel cells[J]. Chemosphere, 2022, 303(3): 135204.
    [99]
    MASIP MACÍA Y, RODRÍGUEZ MACHUCA P, RODRÍGUEZ SOTO A A, et al. Green hydrogen value chain in the sustainability for port operations: case study in the region of Valparaiso, Chile[J]. Sustainability, 2021, 13(24): 13681.
    [100]
    沈晓波, 章雪凝, 刘海峰. 高压氢气泄漏相关安全问题研究与进展[J]. 化工学报, 2021, 72(3): 1217-1229.

    SHEN Xiao-bo, ZHANG Xue-ning, LIU Hai-feng. Research and progress on safety issues related to high-pressure hydrogen leakage[J]. CIESC Journal, 2021, 72(3): 1217-1229. (in Chinese)
    [101]
    郑津洋, 刘自亮, 花争立, 等. 氢安全研究现状及面临的挑战[J]. 安全与环境学报, 2020, 20(1): 106-115.

    ZHENG Jin-yang, LIU Zi-liang, HUA Zheng-li, et al. Research status-in-situ and key challenges in hydrogen safety[J]. Journal of Safety and Environment, 2020, 20(1): 106-115. (in Chinese)
    [102]
    张颖, 宿禹祺, 陈俊帅, 等. 氢气传感器研究的进展与展望[J]. 科学通报, 2023, 68(Z1): 204-219.

    ZHANG Ying, SU Yu-qi, CHEN Jun-shuai, et al. Progress and prospects of research on hydrogen sensors[J]. Chinese Science Bulletin, 2023, 68(Z1): 204-219. (in Chinese)
    [103]
    李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄露爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394.

    LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. Journal of Zhejiang University(Engineering Science), 2015, 49(7): 1389-1394. (in Chinese)
    [104]
    FUSTER B, HOUSSIN-AGBOMSON D, JALLAIS S, et al. Guidelines and recommendations for indoor use of fuel cells and hydrogen systems[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7600-7607.
    [105]
    QI Wei, LIU Jin-feng, CHRISTOFIDES P D. Distributed supervisory predictive control of distributed wind and solar energy systems[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 504-512.
    [106]
    郭雅娟, 陈锦铭, 何红玉, 等. 交直流混合微电网接入分布式新能源的关键技术研究综述[J]. 电力建设, 2017, 38(3): 9-18.

    GUO Ya-juan, CHEN Jin-ming, HE Hong-yu, et al. A review on AC/DC hybrid microgrid key technology containing distributed new energy[J]. Electric Power Construction, 2017, 38(3): 9-18. (in Chinese)
    [107]
    ROY A, OLIVIER J C, AUGER F, et al. A combined optimization of the sizing and the energy management of an industrial multi-energy microgrid: application to a harbour area[J]. Energy Conversion and Management: X, 2021, 12: 100107.
    [108]
    PU Yue, CHEN Wei, ZHANG Rui-cong, et al. Optimal operation strategy of port integrated energy system considering demand response[C]//IEEE. 2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2). New York: IEEE, 2020: 518-523.
    [109]
    PENG Yun, LI Xiang-da, WANG Wen-yuan, et al. A method for determining the allocation strategy of on-shore power supply from a green container terminal perspective[J]. Ocean and Coastal Management, 2019, 167: 158-175.
    [110]
    王景石. 港口微电网中的用电负荷预测及调度优化关键技术研究[D]. 武汉: 武汉理工大学, 2020.

    WANG Jing-shi. Research on key technologies of power load forecasting[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese)
    [111]
    KONG Xiao-bing, LIU Xiang-jie, MA Le-le, et al. Hierarchical distributed model predictive control of standalone wind/solar/battery power system[J]. IEEE Transactions on Systems, Man and Cybernetics. Systems, 2019, 49(8): 1570-1581.
    [112]
    CHENG Tan, ZHU Xiang-qian, GU Xiao-yong, et al. Stochastic energy management and scheduling of microgrids in correlated environment: a deep learning-oriented approach[J]. Sustainable Cities and Society, 2021, 69: 102856.
    [113]
    张宏涛, 吴怡之, 邓开连, 等. 一种基于强化学习的微电网能量管理算法[J]. 物联网技术, 2022, 12(12): 74-78.

    ZHANG Hong-tao, WU Yi-zhi, DENG Kai-lian, et al. An energy management algorithm for microgrid based on reinforcement learning[J]. Internet of Things Technologies, 2022, 12(12): 74-78. (in Chinese)
    [114]
    GOH H H, HUANG Yi-feng, LIM C S, et al. An assessment of multistage reward function design for deep reinforcement learning-based microgrid energy management[J]. IEEE Transactions on Smart Grid, 2022, 13(6): 1.
    [115]
    刘俊峰, 陈剑龙, 王晓生, 等. 基于深度强化学习的微能源网能量管理与优化策略研究[J]. 电网技术, 2020, 44: 3794-3803.

    LIU Jun-feng, CHEN Jian-long, WANG Xiao-sheng, et al. Energy management and optimization of multi-energy grid based on deep reinforcement learning[J]. Power System Technology, 2020, 44(10): 3794-3803. (in Chinese)
    [116]
    PEI Rui, XIE Ji-hua, ZHANG Han-lin, et al. Robust multi-layer energy management and control methodologies for reefer container park in port terminal[J]. Energies, 2021, 14(15): 4456.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (231) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return