Citation: | ZHAO Yong-mei, DONG Yun-wei. Spatio-temporal traffic data prediction based on low-rank tensor completion[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 243-258. doi: 10.19818/j.cnki.1671-1637.2024.04.018 |
[1] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//ICLR. 6th International Conference on Learning Representations. Vancouver: ICLR, 2018: 149806.
|
[2] |
LI Qin, TAN Hua-chun, WU Yuan-kai, et al. Traffic flow prediction with missing data imputed by tensor completion methods[J]. IEEE Access, 2020, 8: 63188-63201. doi: 10.1109/ACCESS.2020.2984588
|
[3] |
CUI Zhi-yong, KE Rui-min, PU Zi-yuan, et al. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values[J]. Transportation Research Part C: Emerging Technologies, 2020, 118: 102674. doi: 10.1016/j.trc.2020.102674
|
[4] |
YANG Fu-ning, LIU Guo-liang, HUANG Li-ping, et al. Tensor decomposition for spatial-temporal traffic flow prediction with sparse data[J]. Sensors, 2020, 20(21): 6046. doi: 10.3390/s20216046
|
[5] |
ZHONG Wei-da, SUO Qiu-ling, JIA Xiao-wei, et al. Heterogeneous spatio-temporal graph convolution network for traffic forecasting with missing values[C]//IEEE. 2021 IEEE 41st International Conference on Distributed Computing Systems. New York: IEEE, 2021: 707-717.
|
[6] |
TAN Hua-chun, WU Yuan-kai, SHEN Bin, et al. Short- term traffic prediction based on dynamic tensor completion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(8): 2123-2133. doi: 10.1109/TITS.2015.2513411
|
[7] |
杨军, 侯忠生. 一种基于灰色马尔科夫的大客流实时预测模型[J]. 北京交通大学学报, 2013, 37(2): 119-123, 128.
YANG Jun, HOU Zhong-sheng. A grey Markov based on large passenger flow real-time prediction model[J]. Journal of Beijing Jiaotong University, 2013, 37(2): 119-123, 128. (in Chinese)
|
[8] |
赵阳阳, 夏亮, 江欣国. 基于经验模态分解与长短时记忆神经网络的短时地铁客流预测模型[J]. 交通运输工程学报, 2020, 20(4): 194-204. doi: 10.19818/j.cnki.1671-1637.2020.04.016
ZHAO Yang-yang, XIA Liang, JIANG Xin-guo. Short-term metro passenger flow prediction based on EMD-LSTM[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 194-204. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.016
|
[9] |
TAN Hua-chun, WU Yuan-kai, FENG Guang-dong, et al. A new traffic prediction method based on dynamic tensor completion[J]. Procedia-Social and Behavioral Sciences, 2013, 96: 2431-2442. doi: 10.1016/j.sbspro.2013.08.272
|
[10] |
FENG Jian-shuai, WANG Wu-hong, ZHANG Yu-Jin, et al. A tensor-based method for missing traffic data completion[J]. Transportation research Part C: Emerging Technologies, 2013, 28: 15-27. doi: 10.1016/j.trc.2012.12.007
|
[11] |
WANG Xu-dong, FAGETTE A, SARTELET P, et al. A probabilistic tensor factorization approach to detect anomalies in spatiotemporal traffic activities[C]//IEEE. 2019 Intelligent Transportation Systems Conference. New York: IEEE, 2019: 1658-1663.
|
[12] |
XU Ming, WU Jian-ping, WANG Hao-han, et al. Anomaly detection in road networks using sliding-window tensor factorization[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(12): 4704-4713. doi: 10.1109/TITS.2019.2941649
|
[13] |
RAN Bin, TAN Hua-chun, WU Yuan-kai, et al. Tensor based missing traffic data completion with spatial-temporal correlation[J]. Physica A: Statistical Mechanics and Its Applications, 2016, 446: 54-63. doi: 10.1016/j.physa.2015.09.105
|
[14] |
RAN Bin, SONG Li, ZHANG Jian, et al. Using tensor completion method to achieving better coverage of traffic state estimation from sparse floating car data[J]. PLoS One, 2016, 11(7): e0157420. doi: 10.1371/journal.pone.0157420
|
[15] |
LIU Ji, MUSIALSKI P, WONKA P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 208-220. doi: 10.1109/TPAMI.2012.39
|
[16] |
CHEN Xin-yun, YANG Jin-ming, SUN Li-jun. A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation[J]. Transportation Research Part C: Emerging Technologies, 2020, 117: 102673. doi: 10.1016/j.trc.2020.102673
|
[17] |
SONG Yun, LI Jie, CHEN Xi, et al. An efficient tensor completion method via truncated nuclear norm[J]. Journal of Visual Communication and Image Representation, 2020, 70: 102791. doi: 10.1016/j.jvcir.2020.102791
|
[18] |
BENGUA J A, PHIEN H N, TUAN H D, et al. Efficient tensor completion for color image and video recovery: low-rank tensor train[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2466-2479. doi: 10.1109/TIP.2017.2672439
|
[19] |
ZHENG Yu- bang, HUANG Ting-zhu, JI Teng- yu, et al. Low-rank tensor completion via smooth matrix factorization[J]. Applied Mathematical Modelling, 2019, 70: 677-695. doi: 10.1016/j.apm.2019.02.001
|
[20] |
CHEN Xin-yu, LEI Meng-ying, SAUNIER N, et al. Low-rank autoregressive tensor completion for spatiotemporal traffic data imputation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 12301-12310. doi: 10.1109/TITS.2021.3113608
|
[21] |
李令先. 基于CNN的轨道交通拥堵预测算法研究[D]. 成都: 成都理工大学, 2019.
LI Ling-xian. Research on prediction algorithm of rail transit congestion based on CNN[D]. Chengdu: Chengdu University of Technology, 2019. (in Chinese)
|
[22] |
赵建东, 申瑾, 刘麟玮. 多源数据驱动CNN-GRU模型的公交客流量分类预测[J]. 交通运输工程学报, 2021, 21(5): 265-273. doi: 10.19818/j.cnki.1671-1637.2021.05.022
ZHAO Jian-dong, SHEN Jin, LIU Lin-wei. Bus passenger flow classification prediction driven by CNN-GRU model and multi-source data[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 265-273. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.05.022
|
[23] |
户佐安, 邓锦程, 韩金丽, 等. 图神经网络在交通预测中的应用综述[J]. 交通运输工程学报, 2023, 23(5): 39-61. doi: 10.19818/j.cnki.1671-1637.2023.05.003
HU Zuo-an, DENG Jin-cheng, HAN Jin-li, et al. Review on application of graph neural network in traffic prediction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(5): 39-61. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.05.003
|
[24] |
CUI Zhi-yong, HENRICKSON K, KE R M, et al. Traffic graph convolutional recurrent neural network: a deep learning framework for network-scale traffic learning and forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(11): 4883-4894. doi: 10.1109/TITS.2019.2950416
|
[25] |
GUO Kan, HU Yong-li, QIAN Zhen, et al. Dynamic graph convolution network for traffic forecasting based on latent network of Laplace matrix estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1009-1018. doi: 10.1109/TITS.2020.3019497
|
[26] |
GU Ya-feng, DENG Li. STAGCN: spatial-temporal attention graph convolution network for traffic forecasting[J]. Mathematics, 2022, 10(9): 1599. doi: 10.3390/math10091599
|
[27] |
CHANG Meng-meng, DING Zhi-ming, CAI Zhi, et al. Prediction of evolution behaviors of transportation hubs based on spatiotemporal neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 9171-9183. doi: 10.1109/TITS.2021.3091708
|
[28] |
WANG Yi, JING Chang-feng, XU Shi-shuo, et al. Attention based spatiotemporal graph attention networks for traffic flow forecasting[J]. Information Sciences, 2022, 607: 869-883. doi: 10.1016/j.ins.2022.05.127
|
[29] |
ZHAO Jian-li, LIU Zhong-bo, SUN Qiu-xia, et al. Attention- based dynamic spatial-temporal graph convolutional networks for traffic speed forecasting[J]. Expert Systems with Applications, 2022, 204: 117511. doi: 10.1016/j.eswa.2022.117511
|
[30] |
LIAO Lyu-chao, HU Zhi-yuan, ZHENG Yu-xin, et al. An improved dynamic Chebyshev graph convolution network for traffic flow prediction with spatial-temporal attention[J]. Applied Intelligence, 2022, 52(14): 16104-16116. doi: 10.1007/s10489-021-03022-w
|
[31] |
RUAN Chang, TAB Xian-chao, LIAO Zhuo-fan, et al. STGAT: spatial-temporal graph attention networks for traffic flow prediction[C]//IEEE. 2023 IEEE 29th International Conference on Parallel and Distributed Systems. New York: IEEE, 2023: 913-919.
|
[32] |
KILMER M E, BRAMAN K, HAO Ning, et al. Third- order tensors as operators on matrices: a theoretical and computational framework with applications in imaging[J]. SIAM Journal on Matrix Analysis and Applications, 2013, 34(1): 148-172. doi: 10.1137/110837711
|
[33] |
TAKAYAMA H, YOKOTA T. Fast signal completion algorithm with cyclic convolutional smoothing[C]//IEEE. 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. New York: IEEE, 2022: 364-371.
|
[34] |
LI Yuan-yuan, YU Ke, WU Xiao-fei. Efficient tensor completion for Internet traffic data recovery[C]//ACM. Proceedings of the 2nd International Conference on Telecommunications and Communication Engineering. New York: ACM, 2018: 251-257.
|
[35] |
CHEN Xin-yu, CHENG Zhan-hong, SAUNIER N, et al. Laplacian convolutional representation for traffic time series imputation[J]. arXiv, 2212: 01529.
|
[36] |
BOYDS, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends© in Machine Learning, 2010, 3(1): 1-122. doi: 10.1561/2200000016
|
[37] |
ZHAO Ling, SONG Yu-jiao, ZHANG Chao, et al. T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858. doi: 10.1109/TITS.2019.2935152
|