Volume 24 Issue 5
Oct.  2024
Turn off MathJax
Article Contents
LIANG Bo, LIAO Wei, ZHENG Jian-long. Review on molecular dynamics simulation for compatibilities of modifiers with asphalt[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005
Citation: LIANG Bo, LIAO Wei, ZHENG Jian-long. Review on molecular dynamics simulation for compatibilities of modifiers with asphalt[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005

Review on molecular dynamics simulation for compatibilities of modifiers with asphalt

doi: 10.19818/j.cnki.1671-1637.2024.05.005
Funds:

National Key Research and Development Program of China 2022YFB2602601

National Natural Science Foundation of China 52378434

Natural Science Foundation of Hunan Province 2022JJ30599

Scientific Research Project of Education Department of Hunan Province 21A0199

Science and Technology Progress and Innovation Program of Department of Transportation of Hunan Province 202003

Postgraduate Scientific Research Innovation Project of Hunan Province CX20230858

More Information
  • Author Bio:

    LIANG Bo(1976-), female, professor, PhD, Liangbo26@csust.edu.cn

    ZHENG Jian-long(1954-), male, academician of Chinese Academy of Engineering, professor, PhD, zjl@csust.edu.cn

  • Received Date: 2024-04-11
    Available Online: 2024-12-20
  • Publish Date: 2024-10-25
  • The research into the compatibilities of different types of modifiers with asphalt based on the molecular dynamics (MD) simulation was comprehensively reviewed, and the basic principles and methods of MD were introduced. The building of molecular models of asphalt and modifiers and the selection of environmental parameters were summarized. The influences of different evaluation indexes on the compatibility results and the correlation between MD simulation and experimental results were analyzed. Research results indicate that in studying the compatibilities of different types of modifiers with asphalt, the MD simulation can provide atom-level understanding and show its advantages in performance prediction, exploration of multiple interactions, optimization of ratios, and visualization to thus save costs and reduce experimental time. For polymer modifiers, their compatibilities with asphalt are mainly evaluated by indicators including the solubility, diffusion coefficient, mean square displacement and binding energy. For non-polymer modifiers, the evaluation is mainly based on the indicators such as the diffusion coefficient, radial distribution function, and binding energy. The solubility is widely applicable to the polymer-modified asphalt, but the thermodynamic properties of non-polymer modifiers and asphalt are greatly different, with a large dispersion in evaluation results. The diffusion coefficient and binding energy show wide applicabilities in evaluating the compatibilities of polymer and non-polymer modifiers with asphalt. Due to the influences of many factors such as the chemical composition, physical properties, interactions between molecules, and rheological behaviors of asphalt under different conditions, accuracies of model parameters should be verified by sufficient experimental data. The accuracy and reliability of simulation results are affected by these factors, resulting in certain differences in adaptabilities and results of different models. With the advances in computing power and algorithms, the MD simulation accuracy and efficiency improve greatly. Thus, researchers can more accurately simulate the chemical structures and dynamic behaviors of modified asphalt at different temperatures. If the MD is combined with experiments effectively to achieve multi-scale research, it is likely to reveal the compatibility mechanism of modifier with asphalt comprehensively, improve material properties, and expand the application fields.

     

  • loading
  • [1]
    ZHANG Tao-li, CHEN Yu-jing, HU Kui, et al. Investigating the compatibility mechanism of bitumen modified with photo-oxidative aging of polyethylene using molecular dynamics simulation[J]. Journal of Materials in Civil Engineering, 2023, 35(11): 04023424. doi: 10.1061/JMCEE7.MTENG-15955
    [2]
    钱锦华, 董福营, 陈晓慧, 等. 聚合物改性沥青的高温流变性能研究进展[J]. 材料导报, 2023, 37(增2): 609-613.

    QIAN Jin-hua, DONG Fu-ying, CHEN Xiao-hui, et al. Materials reports research progress on high temperature rheological properties of polymer modified asphalt[J]. Materials Reports, 2023, 37(S2): 609-613. (in Chinese)
    [3]
    KIM H, LEE S J. Laboratory investigation of different standards of phase separation in crumb rubber modified asphalt binders[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1975-1978. doi: 10.1061/(ASCE)MT.1943-5533.0000751
    [4]
    LIANG Ming, XIN Xue, FAN Wei-yu, et al. Experimental and simulation study of phase microstructure and storage stability of asphalt modified with ethylene-vinyl acetate[J]. Journal of Materials in Civil Engineering, 2019, 31(12): 04019288. doi: 10.1061/(ASCE)MT.1943-5533.0002931
    [5]
    QIAN Cheng-duo, FAN Wei-yu, REN Fang-yong, et al. Influence of polyphosphoric acid (PPA) on properties of crumb rubber (CR) modified asphalt[J]. Construction and Building Materials, 2019, 227: 117094-117094. doi: 10.1016/j.conbuildmat.2019.117094
    [6]
    LIU Sheng-jie, ZHOU Sheng-bo, PENG Ai-hong, et al. Analysis of the performance and mechanism of desulfurized rubber and low-density polyethylene compound-modified asphalt[J]. Journal of Applied Polymer Science, 2019, 136(45): 48194. doi: 10.1002/app.48194
    [7]
    LI Jin, XIAO Fei-peng, AMIRKHANIAN S N. Storage, fatigue and low temperature characteristics of plasma treated rubberized binders[J]. Construction and Building Materials, 2019, 209: 454-462. doi: 10.1016/j.conbuildmat.2019.03.136
    [8]
    LIN Peng, HUANG Wei-dong, TANG Nai-peng, et al. Performance characteristics of terminal blend rubberized asphalt with SBS and polyphosphoric acid[J]. Construction and Building Materials, 2017, 141: 171-182. doi: 10.1016/j.conbuildmat.2017.02.138
    [9]
    ZHU Ji-qing, BALIEU R, WANG Hao-peng. The use of solubility parameters and free energy theory for phase behaviour of polymer-modified bitumen: a review[J]. Road Materials and Pavement Design, 2021, 22(4): 757-778. doi: 10.1080/14680629.2019.1645725
    [10]
    LO PRESTI D, IZQUIERDO M A, JIMÉNEZ DEL BARCO CARRIÓN A. Towards storage-stable high-content recycled tyre rubber modified bitumen[J]. Construction and Building Materials, 2018, 172: 106-111. doi: 10.1016/j.conbuildmat.2018.03.226
    [11]
    TAUSTE R, MORENO-NAVARRO F, SOL-SÁNCHEZ M, et al. Understanding the bitumen ageing phenomenon: a review[J]. Construction and Building Materials, 2018, 192: 593-609. doi: 10.1016/j.conbuildmat.2018.10.169
    [12]
    GE Dong-dong, YAN Ke-zhen, YOU Zhan-ping, et al. Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene[J]. Construction and Building Materials, 2016, 126: 66-76. doi: 10.1016/j.conbuildmat.2016.09.014
    [13]
    TANG Jun-cheng, ZHU Chong-zheng, ZHANG Heng-long, et al. Effect of liquid ASAs on the rheological properties of crumb rubber modified asphalt[J]. Construction and Building Materials, 2019, 194: 238-246. doi: 10.1016/j.conbuildmat.2018.11.028
    [14]
    YAO Hui, YOU Zhan-ping, LI Liang, et al. Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy[J]. Construction and Building Materials, 2013, 38: 327-337. doi: 10.1016/j.conbuildmat.2012.08.004
    [15]
    KAFLE B, BÖCKER U, WUBSHET S G, et al. Fourier-transform infrared spectroscopy for characterization of liquid protein solutions: a comparison of two sampling techniques[J]. Vibrational Spectroscopy, 2023, 124: 103490. doi: 10.1016/j.vibspec.2022.103490
    [16]
    YIN Long, ZHOU Hong-bing, QUAN Yi-wu, et al. Prompt modification of styrene-butadiene rubber surface with trichloroisocyanuric acid by increasing chlorination temperature[J]. Journal of Applied Polymer Science, 2012, 124(1): 661-668. doi: 10.1002/app.35018
    [17]
    POLACCO G, FILIPPI S. Vulcanization accelerators as alternative to elemental sulfur to produce storage stable SBS modified asphalts[J]. Construction and Building Materials, 2014, 58: 94-100. doi: 10.1016/j.conbuildmat.2014.02.018
    [18]
    RASOOL R, SONG Pan, WANG Shi-feng. Thermal analysis on the interactions among asphalt modified with SBS and different degraded tire rubber[J]. Construction and Building Materials, 2018, 182: 134-143. doi: 10.1016/j.conbuildmat.2018.06.104
    [19]
    ZHU Ji-qing, BALIEU R, LU Xiao-hu, et al. Numerical investigation on phase separation in polymer-modified bitumen: effect of thermal condition[J]. Journal of Materials Science, 2017, 52(11): 6525-6541. doi: 10.1007/s10853-017-0887-y
    [20]
    ZHU Ji-qing, BALIEU R, LU Xiao-hu, et al. Microstructure evaluation of polymer-modified bitumen by image analysis using two-dimensional fast Fourier transform[J]. Materials and Design, 2018, 137: 164-175. doi: 10.1016/j.matdes.2017.10.023
    [21]
    汪海年, 郑文华, 尤占平, 等. 聚合物改性剂和石油沥青相容性评价方法研究进展[J]. 交通运输工程学报, 2023, 23(1): 8-26. doi: 10.19818/j.cnki.1671-1637.2023.01.002

    WANG Hai-nian, ZHENG Wen-hua, YOU Zhan-ping, et al. Research progress on compatibility evaluation methods of polymer modifiers and petroleum asphalts[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 8-26. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.01.002
    [22]
    张恩浩, 刘爽, 单丽岩, 等. 石墨烯微胶囊沥青双机制愈合机理研究[J]. 中国公路学报, 2022, 35(7): 91-99. doi: 10.3969/j.issn.1001-7372.2022.07.007

    ZHANG En-hao, LIU Shuang, SHAN Li-yan, et al. Study on double healing mechanism of graphene microcapsule asphalt binder[J]. China Journal of Highway and Transport, 2022, 35(7): 91-99. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.07.007
    [23]
    全秀洁, 孔令云, 王昊敏, 等. 亲水基团对十二烷基阴离子乳化剂在SiO2表面吸附影响的分子动力学模拟与试验研究[J]. 复合材料学报, 2022, 39(6): 2894-2906.

    QUAN Xiu-jie, KONG Ling-yun, WANG Hao-min, et al. Molecular dynamics simulation and experimental study on the influence of hydrophilic group on the adsorption of dodecyl anionic emulsifier on SiO2 surface[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2894-2906. (in Chinese)
    [24]
    吕志田, 潘伶, 张晋铭, 等. 沥青-集料界面粘附机理的分子动力学模拟[J]. 材料科学与工程学报, 2022, 40(5): 809-815, 834.

    LYU Zhi-tian, PAN Ling, ZHANG Jin-ming, et al. Molecular dynamics simulation of adhesion mechanism of asphalt-aggregate interface[J]. Journal of Materials Science and Engineering, 2022, 40(5): 809-815, 834. (in Chinese)
    [25]
    汪海年, 丁鹤洋, 冯珀楠, 等. 沥青混合料分子模拟技术综述[J]. 交通运输工程学报, 2020, 20(2): 1-14. doi: 10.19818/j.cnki.1671-1637.2020.02.001

    WANG Hai-nian, DING He-yang, FENG Po-nan, et al. Advances on molecular simulation technique in asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 1-14. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.001
    [26]
    XU Ning, WANG Hai-nian, WANG Hui-min, et al. Research progress on resource utilization of waste cooking oil in asphalt materials: a state-of-the-art review[J]. Journal of Cleaner Production, 2023, 385: 135427. doi: 10.1016/j.jclepro.2022.135427
    [27]
    GAO Ying-li, TIAN Wei-wei, LI Yue-lin, et al. Study on compatibility mechanism of plasticizer and asphalt based on molecular dynamics[J]. Materials and Design, 2023, 228: 111827. doi: 10.1016/j.matdes.2023.111827
    [28]
    XU Guang-ji, YAO Yu-shi, MA Tao, et al. Experimental study and molecular simulation on regeneration feasibility of high-content waste tire crumb rubber modified asphalt[J]. Construction and Building Materials, 2023, 369: 130570. doi: 10.1016/j.conbuildmat.2023.130570
    [29]
    HAN Yan-qiang, ALI I, WANG Zhi-long, et al. Machine learning accelerates quantum mechanics predictions of molecular crystals[J]. Physics Reports, 2021, 934: 1-71. doi: 10.1016/j.physrep.2021.08.002
    [30]
    KAMACHI T, YOSHIZAWA K. Low-mode conformational search method with semiempirical quantum mechanical calculations: application to enantioselective organocatalysis[J]. Journal of Chemical Information and Modeling, 2016, 56(2): 347-353. doi: 10.1021/acs.jcim.5b00671
    [31]
    POLKOVNIKOV M, GRAMOLIN A V, KAPLAN D E, et al. Experimental limit on nonlinear state-dependent terms in quantum theory[J]. Physical Review Letters, 2023, 130(4): 040202. doi: 10.1103/PhysRevLett.130.040202
    [32]
    VAIWALA R, AYAPPA K G. A generic force field for simulating native protein structures using dissipative particle dynamics[J]. Soft Matter, 2021, 17(42): 9772-9785. doi: 10.1039/D1SM01194D
    [33]
    SUN Huai. COMPASS: an ab initio force-field optimized for condensed-phase applications—overview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338-7364. doi: 10.1021/jp980939v
    [34]
    SUN Huai, JIN Zhao, YANG Chun-wei, et al. COMPASS Ⅱ: extended coverage for polymer and drug-like molecule databases[J]. Journal of Molecular Modeling, 2016, 22(2): 47. doi: 10.1007/s00894-016-2909-0
    [35]
    SAVIN A V, MAZO M A. The COMPASS force field: validation for carbon nanoribbons[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118: 113937. doi: 10.1016/j.physe.2019.113937
    [36]
    ASCHE T S, BEHRENS P, SCHNEIDER A M. Validation of the COMPASS force field for complex inorganic-organic hybrid polymers[J]. Journal of Sol-Gel Science and Technology, 2017, 81(1): 195-204. doi: 10.1007/s10971-016-4185-y
    [37]
    AKKERMANS R L C, SPENLEY N A, ROBERTSON S H. COMPASS Ⅲ: automated fitting workflows and extension to ionic liquids[J]. Molecular Simulation, 2021, 47(7): 540-551. doi: 10.1080/08927022.2020.1808215
    [38]
    JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236. doi: 10.1021/ja9621760
    [39]
    CYGAN R T, LIANG Jian-jie, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. doi: 10.1021/jp0363287
    [40]
    CIEPLAK P, HOWARD A E, POWERS J P, et al. Elucidating the origin of conformational energy differences in substituted 1, 3-dioxanes: a combined theoretical and experimental study[J]. The Journal of Organic Chemistry, 1996, 61(11): 3662-3668. doi: 10.1021/jo951918p
    [41]
    BROOKS B R, BROOKS III C L, MACKERELL JR A D, et al. CHARMM: the biomolecular simulation program[J]. Journal of Computational Chemistry, 2009, 30(10): 1545-1614. doi: 10.1002/jcc.21287
    [42]
    XU Xiang-tian, LI Gao-sheng, ZHAO Yu-qin, et al. Analytical solutions for heat conduction problems with three kinds of periodic boundary conditions and their applications[J]. Applied Mathematics and Computation, 2023, 442: 127735. doi: 10.1016/j.amc.2022.127735
    [43]
    GREISMAN J B, WILLMORE L, YEH C Y, et al. Discovery and validation of the binding poses of allosteric fragment hits to protein tyrosine phosphatase 1b: from molecular dynamics simulations to X-ray crystallography[J]. Journal of Chemical Information and Modeling, 2023, 63(9): 2644-2650. doi: 10.1021/acs.jcim.3c00236
    [44]
    JANA G, MENDOZA-CORTES J L. Thermodynamics, kinetics, and optical properties of rotaxane: a first-principles molecular dynamics study[J]. The Journal of Physical Chemistry A, 2023, 127(12): 2671-2687. doi: 10.1021/acs.jpca.2c07774
    [45]
    KUMAR A, SWAIN S, PRABHUDESAI V S. Inelastic electron scattering induced quantum coherence in molecular dynamics[J]. Nature Communications, 2023, 14(1): 2769. doi: 10.1038/s41467-023-38440-6
    [46]
    DENG Shao-zhong, XUE Chang-feng, BAUMKETNER A, et al. Generalized image charge solvation model for electrostatic interactions in molecular dynamics simulations of aqueous solutions[J]. Journal of Computational Physics, 2013, 245: 84-106. doi: 10.1016/j.jcp.2013.03.027
    [47]
    AL-NEMA M, GAURAV A, LEE V S. Designing of 2, 3-dihydrobenzofuran derivatives as inhibitors of PDE1B using pharmacophore screening, ensemble docking and molecular dynamics approach[J]. Computers in Biology and Medicine, 2023, 159: 106869. doi: 10.1016/j.compbiomed.2023.106869
    [48]
    DITTRICH J, POPARA M, KUBIAK J, et al. Resolution of maximum entropy method-derived posterior conformational ensembles of a flexible system probed by fret and molecular dynamics simulations[J]. Journal of Chemical Theory and Computation, 2023, 19(8): 2389-2409. doi: 10.1021/acs.jctc.2c01090
    [49]
    ALBERTÍ M, AMAT A, FARRERA L, et al. From the (NH3)2-5 clusters to liquid ammonia: molecular dynamics simulations using the NVE and NpT ensembles[J]. Journal of Molecular Liquids, 2015, 212: 307-315. doi: 10.1016/j.molliq.2015.09.016
    [50]
    HAMILTON N E, MAHJOUB R, LAWS K J, et al. A blended NPT/NVT scheme for simulating metallic glasses[J]. Computational Materials Science, 2017, 130: 130-137. doi: 10.1016/j.commatsci.2017.01.006
    [51]
    KIM M, KIM E, LEE S, et al. New method for constant-NPT molecular dynamics[J]. The Journal of Physical Chemistry A, 2019, 123(8): 1689-1699. doi: 10.1021/acs.jpca.8b09082
    [52]
    INGEBRIGTSEN T, HEILMANN O J, TOXVAERD S, et al. Time reversible molecular dynamics algorithms with holonomic bond constraints in the NPH and NPT ensembles using molecular scaling[J]. The Journal of Chemical Physics, 2010, 132(15): 154106. doi: 10.1063/1.3363609
    [53]
    HIYAMA M, KINJO T, HYODO S. Angular momentum form of Verlet algorithm for rigid molecules[J]. Journal of the Physical Society of Japan, 2008, 77(6): 064001. doi: 10.1143/JPSJ.77.064001
    [54]
    BATCHO P F, SCHLICK T. Special stability advantages of position—Verlet over velocity-Verlet in multiple-time step integration[J]. The Journal of Chemical Physics, 2001, 115(9): 4019-4029. doi: 10.1063/1.1389855
    [55]
    GHAEMI A, ARASTEH B. SFLA-based heuristic method to generate software structural test data[J]. Journal of Software: Evolution and Process, 2020, 32(1): e2228. doi: 10.1002/smr.2228
    [56]
    REFSON K. Moldy: a portable molecular dynamics simulation program for serial and parallel computers[J]. Computer Physics Communications, 2000, 126(3): 310-329. doi: 10.1016/S0010-4655(99)00496-8
    [57]
    LIU Yong-sheng, HU Pan-ru, XU Zhi-bo, et al. Tooth surface registration of spiral bevel gear based on improved genetic algorithm[J]. Journal of Physics: Conference Series, 2023, 2562(1): 012020. doi: 10.1088/1742-6596/2562/1/012020
    [58]
    郑仕跃, 邹卓民, 周权峰, 等. 基于12成分模型和分子动力学的沥青材料性质模拟研究[J]. 铁道科学与工程学报, 2022, 19(5): 1331-1338.

    ZHENG Shi-yue, ZOU Zhuo-min, ZHOU Quan-feng, et al. Simulation of asphalt properties based on 12-component model and molecular dynamics[J]. Journal of Railway Science and Engineering, 2022, 19(5): 1331-1338. (in Chinese)
    [59]
    DING Yong-jie, HUANG Bao-shan, SHU Xiang. Modeling shear viscosity of asphalt through nonequilibrium molecular dynamics simulation[J]. Transportation Research Record, 2018, 2672(28): 235-243. doi: 10.1177/0361198118793316
    [60]
    DING He-yang, WANG Hai-nian, QU Xin, et al. Towards an understanding of diffusion mechanism of bio-rejuvenators in aged asphalt binder through molecular dynamics simulation[J]. Journal of Cleaner Production, 2021, 299: 126927. doi: 10.1016/j.jclepro.2021.126927
    [61]
    FALLAH F, KHABAZ F, KIM Y R, et al. Molecular dynamics modeling and simulation of bituminous binder chemical aging due to variation of oxidation level and saturate-aromatic-resin-asphaltene fraction[J]. Fuel, 2019, 237: 71-80. doi: 10.1016/j.fuel.2018.09.110
    [62]
    HANSEN J S, LEMARCHAND C A, NIELSEN E, et al. Four-component united-atom model of bitumen[J]. The Journal of Chemical Physics, 2013, 138(9): 094508. doi: 10.1063/1.4792045
    [63]
    LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. doi: 10.1016/j.fuel.2013.07.012
    [64]
    PAN Jie-lin, TAREFDER R A, HOSSAIN M I. Study of moisture impact on asphalt before and after oxidation using molecular dynamics simulations[J]. Transportation Research Record, 2016, 2574(1): 38-47. doi: 10.3141/2574-04
    [65]
    QU Xin, FAN Ze-peng, LI Tian-shuai, et al. Understanding of asphalt chemistry based on the six-fraction method[J]. Construction and Building Materials, 2021, 311: 125241. doi: 10.1016/j.conbuildmat.2021.125241
    [66]
    SUN Da-quan, SUN Guo-qiang, ZHU Xing-yi, et al. Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations[J]. Fuel, 2018, 211: 609-620. doi: 10.1016/j.fuel.2017.09.089
    [67]
    XU Guang-ji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. doi: 10.1016/j.fuel.2016.10.021
    [68]
    ZADSHIR M, OLDHAM D J, HOSSEINNEZHAD S, et al. Investigating bio-rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation[J]. Construction and Building Materials, 2018, 190: 392-402. doi: 10.1016/j.conbuildmat.2018.09.137
    [69]
    ZHANG Li-qun, GREENFIELD M L. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation[J]. The Journal of Chemical Physics, 2007, 127(19): 194502. doi: 10.1063/1.2799189
    [70]
    ZHANG Li-qun, GREENFIELD M L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy and Fuels, 2008, 22(5): 3363-3375. doi: 10.1021/ef700699p
    [71]
    DICKIE J P, YEN T F. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39(14): 1847-1852. doi: 10.1021/ac50157a057
    [72]
    WANG Jiang, FERGUSON A L. Mesoscale simulation of asphaltene aggregation[J]. The Journal of Physical Chemistry B, 2016, 120(32): 8016-8035. doi: 10.1021/acs.jpcb.6b05925
    [73]
    AIREY G D. Rheological properties of styrene butadiene styrene polymer modified road bitumens[J]. Fuel, 2003, 82(14): 1709-1719. doi: 10.1016/S0016-2361(03)00146-7
    [74]
    CHEN Ming-yuan, GENG Jiu-guang, XIA Cai-yun, et al. A review of phase structure of SBS modified asphalt: affecting factors, analytical methods, phase models and improvements[J]. Construction and Building Materials, 2021, 294: 123610. doi: 10.1016/j.conbuildmat.2021.123610
    [75]
    GUO Fu-cheng, ZHANG Jiu-peng, PEI Jian-zhong, et al. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation[J]. Construction and Building Materials, 2020, 252: 118956. doi: 10.1016/j.conbuildmat.2020.118956
    [76]
    FAKHRI M, SHAHRYARI E, AHMADI T. Investigate the use of recycled polyvinyl chloride (PVC) particles in improving the mechanical properties of stone mastic asphalt (SMA)[J]. Construction and Building Materials, 2022, 326: 126780. doi: 10.1016/j.conbuildmat.2022.126780
    [77]
    ZHENG Wen-hua, WANG Hai-nian, CHEN Yu, et al. A review on compatibility between crumb rubber and asphalt binder[J]. Construction and Building Materials, 2021, 297: 123820. doi: 10.1016/j.conbuildmat.2021.123820
    [78]
    SUN Guo-qiang, LI Bin, SUN Da-quan, et al. Chemo-rheological and morphology evolution of polymer modified bitumens under thermal oxidative and all-weather aging[J]. Fuel, 2021, 285: 118989. doi: 10.1016/j.fuel.2020.118989
    [79]
    LI Chi-xuan, FAN Su-ying, XU Tao. Method for evaluating compatibility between SBS modifier and asphalt matrix using molecular dynamics models[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021207. doi: 10.1061/(ASCE)MT.1943-5533.0003863
    [80]
    YANG Peng, LIU Dao-sheng, YAN Feng, et al. Application of the compatibility theory and the solubility parameter theory in SBS modification asphalt[J]. Petroleum Science and Technology, 2002, 20(3/4): 367-376.
    [81]
    WANG Tao, HUANG Xiao-sheng, ZHANG Yu-zhen. Application of Hansen solubility parameters to predict compatibility of SBS-modified bitumen[J]. Journal of Materials in Civil Engineering, 2010, 22: 773-778. doi: 10.1061/(ASCE)MT.1943-5533.0000011
    [82]
    LI Guan-nan, GU Zhao-jun, TAN Yi-qiu, et al. Research on the phase structure of styrene-butadiene-styrene modified asphalt based on molecular dynamics[J]. Construction and Building Materials, 2022, 326: 126933. doi: 10.1016/j.conbuildmat.2022.126933
    [83]
    冯新军, 郝培文. SBS聚合物改性剂与基质沥青的配伍性研究[J]. 公路, 2007, 52(7): 186-190. doi: 10.3969/j.issn.0451-0712.2007.07.045

    FENG Xin-jun, HAO Pei-wen. A study on consistency of SBS polymer modifier and asphalt[J]. Highway, 2007, 52(7): 186-190. (in Chinese) doi: 10.3969/j.issn.0451-0712.2007.07.045
    [84]
    TANG Jin, WANG Hao, LIANG Ming. Molecular simulation and experimental analysis of interaction and compatibility between asphalt binder and styrene-butadiene-styrene[J]. Construction and Building Materials, 2022, 342: 128028. doi: 10.1016/j.conbuildmat.2022.128028
    [85]
    LUO Hai-song, ZHENG Chuan-feng, YANG Xue, et al. Development of technology to accelerate SBS-modified asphalts swelling in dry modification mode[J]. Construction and Building Materials, 2022, 314: 125703. doi: 10.1016/j.conbuildmat.2021.125703
    [86]
    LIANG Ming, HU Yong, KONG Xiang-jun, et al. Effects of SBS configuration on performance of high modulus bitumen based on dynamic mechanical analysis[J]. Kemija U Industriji, 2016, 65(7/8): 379-384.
    [87]
    YU Cai-hua, HU Kui, YANG Qi-lin, et al. Multi-scale observation of oxidative aging on the enhancement of high-temperature property of SBS-modified asphalt[J]. Construction and Building Materials, 2021, 313: 125478. doi: 10.1016/j.conbuildmat.2021.125478
    [88]
    LIN Peng, YAN Chuan-qi, HUANG Wei-dong, et al. Rheological, chemical and aging characteristics of high content polymer modified asphalt[J]. Construction and Building Materials, 2019, 207: 616-629. doi: 10.1016/j.conbuildmat.2019.02.086
    [89]
    SU Man-man, ZHOU Juan-lan, LU Jing-zhou, et al. Using molecular dynamics and experiments to investigate the morphology and micro-structure of SBS modified asphalt binder[J]. Materials Today Communications, 2022, 30: 103082. doi: 10.1016/j.mtcomm.2021.103082
    [90]
    GAO Ming-xing, CHEN Yao-lu, FAN Cong-hao, et al. Molecular dynamics study on the compatibility of asphalt and rubber powder with different component contents[J]. ACS Omega, 2022, 7(41): 36157-36164. doi: 10.1021/acsomega.2c02813
    [91]
    DAN Han-cheng, WEN Xiang, CHEN Jia-qi, et al. A molecular dynamics approach to the interfacial characteristics between melamine formaldehyde resin and paving asphalts[J]. Construction and Building Materials, 2023, 365: 130051. doi: 10.1016/j.conbuildmat.2022.130051
    [92]
    DALY W H, BALAMURUGAN S S, NEGULESCU I, et al. Characterization of crumb rubber modifiers after dispersion in asphalt binders[J]. Energy and Fuels, 2019, 33(4): 2665-2679. doi: 10.1021/acs.energyfuels.8b03559
    [93]
    GUO Fu-cheng, ZHANG Jiu-peng, PEI Jian-zhong, et al. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation[J]. Frontiers of Structural and Civil Engineering, 2020, 14(2): 435-445. doi: 10.1007/s11709-019-0603-x
    [94]
    KHALILI M, JADIDI K, KARAKOUZIAN M, et al. Rheological properties of modified crumb rubber asphalt binder and selecting the best modified binder using AHP method[J]. Case Studies in Construction Materials, 2019, 11: e00276. doi: 10.1016/j.cscm.2019.e00276
    [95]
    NANJEGOWDA V H, BILIGIRI K P. Utilization of high contents of recycled tire crumb rubber in developing a modified-asphalt-rubber binder for road applications[J]. Resources, Conservation and Recycling, 2023, 192: 106909. doi: 10.1016/j.resconrec.2023.106909
    [96]
    KONG Pei-pei, XU Gang, FU Liu-xu, et al. Chemical structure of rubber powder on the compatibility of rubber powder asphalt[J]. Construction and Building Materials, 2023, 392: 131769. doi: 10.1016/j.conbuildmat.2023.131769
    [97]
    李昊, 郭荣鑫, 晏永, 等. 高模量沥青及其混合料低温性能研究进展[J]. 化工进展, 2022, 41(增1): 351-365.

    LI Hao, GUO Rong-xin, YAN Yong, et al. Low temperature performance of high modulus asphalt binder and mixtures: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 351-365. (in Chinese)
    [98]
    HU Kui, YU Cai-hua, CHEN Yu-jing, et al. Multiscale mechanisms of asphalt performance enhancement by crumbed waste tire rubber: insight from molecular dynamics simulation[J]. Journal Molecular Modeling, 2021, 27(6): 170. doi: 10.1007/s00894-021-04786-1
    [99]
    LIU Qi, LIU Jin-zhou, YU Bin, et al. Study on the properties of waste oil-activated crumb rubber-modified asphalt based on molecular dynamics simulation and rheology[J]. Advances in Materials Science and Engineering, 2022, 2022: 7751479.
    [100]
    JIAO Bo-zong, PAN Bao-feng, CHE Tian-kai. Evaluating impacts of desulfurization and depolymerization on thermodynamics properties of crumb rubber modified asphalt through molecular dynamics simulation[J]. Construction and Building Materials, 2022, 323: 126360. doi: 10.1016/j.conbuildmat.2022.126360
    [101]
    QIAN Zhen-dong, CHEN Chun, JIANG Chen-long, et al. Development of a lightweight epoxy asphalt mixture for bridge decks[J]. Construction and Building Materials, 2013, 48: 516-520. doi: 10.1016/j.conbuildmat.2013.06.096
    [102]
    SUN Yi-fan, ZHANG Yu-ge, XU Ke, et al. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes[J]. Journal of Applied Polymer Science, 2015, 132(12): 41694. doi: 10.1002/app.41694
    [103]
    CONG Pei-liang, TIAN Yu, LIU Ning, et al. Investigation of epoxy-resin-modified asphalt binder[J]. Journal of Applied Polymer Science, 2016, 133(21): 43401. doi: 10.1002/app.43401
    [104]
    LI Rong, FENG Feng, CHEN Ze-Zhong, et al. Sensitive detection of carcinoembryonic antigen using surface plasmon resonance biosensor with gold nanoparticles signal amplification[J]. Talanta, 2015, 140: 143-149. doi: 10.1016/j.talanta.2015.03.041
    [105]
    WEI Kun, WANG Ya-chuan, MA Biao. Effects of microencapsulated phase change materials on the performance of asphalt binders[J]. Renewable Energy, 2019, 132: 931-940. doi: 10.1016/j.renene.2018.08.062
    [106]
    YU Cai-hua, HU Kui, CHEN Yu-jing, et al. Compatibility and high temperature performance of recycled polyethylene modified asphalt using molecular simulations[J]. Molecular Simulation, 2021, 47(13): 1037-1049. doi: 10.1080/08927022.2021.1944624
    [107]
    LIANG Ming, XIN Xue, FAN Wei-yu, et al. Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: experimental and numerical characterizations[J]. Construction and Building Materials, 2019, 203: 608-620. doi: 10.1016/j.conbuildmat.2019.01.095
    [108]
    YU Rui-en, FANG Chang-qing, LIU Pei, et al. Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite[J]. Applied Clay Science, 2015, 104: 1-7. doi: 10.1016/j.clay.2014.11.033
    [109]
    YANG Xiao-long, SHEN Ai-qin, GUO Yin-chuan, et al. A review of nano layered silicate technologies applied to asphalt materials[J]. Road Materials and Pavement Design, 2021, 22(8): 1708-1733. doi: 10.1080/14680629.2020.1713199
    [110]
    GUO Meng, TAN Yi-qiu, WANG Lin-bing, et al. Diffusion of asphaltene, resin, aromatic and saturate components of asphalt on mineral aggregates surface: molecular dynamics simulation[J]. Road Materials and Pavement Design, 2017, 18(S3): 149-158.
    [111]
    GUO Meng, TAN Yi-qiu, WEI Jian-ming. Using molecular dynamics simulation to study concentration distribution of asphalt binder on aggregate surface[J]. Journal of Materials in Civil Engineering, 2018, 30(5): 04018075. doi: 10.1061/(ASCE)MT.1943-5533.0002258
    [112]
    LIU Jin-zhou, YU Bin, HONG Qian-zhe. Molecular dynamics simulation of distribution and adhesion of asphalt components on steel slag[J]. Construction and Building Materials, 2020, 255: 119332. doi: 10.1016/j.conbuildmat.2020.119332
    [113]
    LONG Zheng-wu, ZHOU Si-jia, JIANG Shao-ting, et al. Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation[J]. Journal Molecular Modeling, 2021, 27(3): 81. doi: 10.1007/s00894-021-04697-1
    [114]
    张恒龙, 朱崇政, 张葆琳, 等. 表面修饰纳米二氧化硅对沥青性能的影响[J]. 建筑材料学报, 2014, 17(1): 172-176. doi: 10.3969/j.issn.1007-9629.2014.01.031

    ZHANG Heng-long, ZHU Chong-zheng, ZHANG Bao-lin, et al. Effect of nano-SiO2 with modified surface on properties of bitumen[J]. Journal of Building Materials, 2014, 17(1): 172-176. (in Chinese) doi: 10.3969/j.issn.1007-9629.2014.01.031
    [115]
    WANG Li-ming, LI Zhu-ying. Molecular dynamics simulation and experimental analysis of the effect of ultrasonic disposal on the compatibility of nanoasphalt[J]. Coatings, 2022, 12(4): 424-444. doi: 10.3390/coatings12040424
    [116]
    CAO Xue-juan, DENG Mei, DING Yong-jie, et al. Effect of photocatalysts modification on asphalt: investigations by experiments and theoretical calculation[J]. Journal of Materials in Civil Engineering, 2021, 33(5): 04021083. doi: 10.1061/(ASCE)MT.1943-5533.0003708
    [117]
    XIE Yun-lan, YU Pan-deng, ZHAI Ming. Analysis of nano-ZnO-modified asphalt compatibility based on molecular dynamics[J]. Materials, 2023, 16(13): 4710. doi: 10.3390/ma16134710
    [118]
    张明祥. 纳米氧化锌改性沥青及其抗老化性能研究[D]. 西安: 长安大学, 2015.

    ZHANG Ming-xiang, Nanometer zinc oxide modified asphalt and its anti-aging properties research[D]. Xi'an: Chang'an University, 2015. (in Chinese)
    [119]
    SAMIEADEL A, OLDHAM D, FINI E H. Multi-scale characterization of the effect of wax on intermolecular interactions in asphalt binder[J]. Construction and Building Materials, 2017, 157: 1163-1172. doi: 10.1016/j.conbuildmat.2017.09.188
    [120]
    SU Man-man, SI Chun-di, ZHANG Zeng-ping, et al. Molecular dynamics study on influence of nano-ZnO/SBS on physical properties and molecular structure of asphalt binder[J]. Fuel, 2020, 263: 116777. doi: 10.1016/j.fuel.2019.116777
    [121]
    HU Kui, YU Cai-hua, YANG Qi-lin, et al. Mechanistic study of graphene reinforcement of rheological performance of recycled polyethylene modified asphalt: a new observation from molecular dynamics simulation[J]. Construction and Building Materials, 2022, 320: 126263. doi: 10.1016/j.conbuildmat.2021.126263
    [122]
    LI Li-min, LI Heng-zhen, TAN Yi-qiu, et al. Investigation of chloride release characteristic of chlorine-based anti-icing asphalt mixture[J]. Construction and Building Materials, 2021, 312: 125410. doi: 10.1016/j.conbuildmat.2021.125410
    [123]
    DENG Mei, CAO Xue-juan, LI Zhi-hao, et al. Investigating properties and intermolecular interactions of sludge bio-oil modified asphalt[J]. Journal of Molecular Liquids, 2022, 360: 119415. doi: 10.1016/j.molliq.2022.119415
    [124]
    DUAN Shao-chan, HU Jian-ying, MA Tao, et al. Anti-icing mechanism of an environmentally sustainable tenebrio molitor antifreeze protein modified asphalt binder via molecular dynamics simulations[J]. Construction and Building Materials, 2022, 360: 129580. doi: 10.1016/j.conbuildmat.2022.129580
    [125]
    REN Shi-song, LIU Xue-yan, ZHANG Yi, et al. Multi-scale characterization of lignin modified bitumen using experimental and molecular dynamics simulation methods[J]. Construction and Building Materials, 2021, 287: 123058. doi: 10.1016/j.conbuildmat.2021.123058
    [126]
    HUANG Ting, ZHANG Zeng-ping, WANG Li, et al. Study on the compatibility between polyurethane and asphalt based on experiment and molecular dynamics simulation[J]. Case Studies in Construction Materials, 2022, 17: e01424. doi: 10.1016/j.cscm.2022.e01424
    [127]
    LU Peng-zhen, MA Yi-heng, YE Kai, et al. Analysis of high-temperature performance of polymer-modified asphalts through molecular dynamics simulations and experiments[J]. Construction and Building Materials, 2022, 350: 128903. doi: 10.1016/j.conbuildmat.2022.128903
    [128]
    LU Peng-zhen, HUANG Si-min, SHEN Yang, et al. Mechanical performance analysis of polyurethane-modified asphalt using molecular dynamics method[J]. Polymer Engineering and Science, 2021, 61(9): 2323-2338. doi: 10.1002/pen.25760
    [129]
    YU Xin, WANG Jun-yan, SI Jing-jing, et al. Research on compatibility mechanism of biobased cold-mixed epoxy asphalt binder[J]. Construction and Building Materials, 2020, 250: 118868. doi: 10.1016/j.conbuildmat.2020.118868
    [130]
    FENG Lei, ZHAO Zhao, CHEN Tong-dan, et al. Comparative study of octavinyl oligomeric sesquisiloxane nanomaterial-modified asphalt using molecular dynamics method[J]. Polymers, 2022, 14(21): 4577-4597. doi: 10.3390/polym14214577
    [131]
    ABE A A, OLIVIERO ROSSI C, CAPUTO P, et al. Spicy bitumen: curcumin effects on the rheological and adhesion properties of asphalt[J]. Materials, 2021, 14(7): 1622-1638. doi: 10.3390/ma14071622
    [132]
    SAFAELDEEN G I, AL-MANSOB R A, AL-SABAEEI A M, et al. Investigating the mechanical properties and durability of asphalt mixture modified with epoxidized natural rubber (ENR) under short and long-term aging conditions[J]. Polymers, 2022, 14(21): 4726-4742. doi: 10.3390/polym14214726
    [133]
    XU Ou-ming, YANG Xing-hao, XIANG Shun-lin, et al. Migration characteristic and model of chloride ions for NaCl-based salt storage asphalt mixtures[J]. Construction and Building Materials, 2021, 280: 122482. doi: 10.1016/j.conbuildmat.2021.122482
    [134]
    ZHANG Feng-lei, LIU Xiao-dong, ZHANG Lei, et al. Preparation and properties of epoxy asphalt modified by biomimetic graphene oxide nanocomposites[J]. Journal of Materials in Civil Engineering, 2023, 35(1): 04022392. doi: 10.1061/(ASCE)MT.1943-5533.0004569
    [135]
    LYU Guo-chun, GAO Feng-feng, LIU Guo-kui, et al. The properties of asphaltene at the oil-water interface: a molecular dynamics simulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 515: 34-40.
    [136]
    CAO Jia-wen, LUO Yao, ZHANG Heng-long, et al. Understanding the role of quaternary ammonium cations on the interaction of bitumen with clay: a molecular modeling study[J]. Construction and Building Materials, 2023, 364: 129970. doi: 10.1016/j.conbuildmat.2022.129970
    [137]
    BEHNOOD A, MODIRI GHAREHVERAN M. Morphology, rheology, and physical properties of polymer-modified asphalt binders[J]. European Polymer Journal, 2019, 112: 766-791. doi: 10.1016/j.eurpolymj.2018.10.049
    [138]
    GAO Ying-li, XIE Yu-tong, LIAO Mei-jie, et al. Study on the mechanism of the effect of graphene on the rheological properties of rubber-modified asphalt based on size effect[J]. Construction and Building Materials, 2023, 364: 129815. doi: 10.1016/j.conbuildmat.2022.129815
    [139]
    YU Cai-hua, HU Kui, CHEN Gui-xiang, et al. Molecular dynamics simulation and microscopic observation of compatibility and interphase of composited polymer modified asphalt with carbon nanotubes[J]. Journal of Zhejiang University: Science A, 2021, 22(7): 528-546. doi: 10.1631/jzus.A2000359
    [140]
    WANG Peng, DONG Ze-jiao, LIU Zhi-yang. Influence of carbon nanotubes on morphology of asphalts modified with styrene-butadiene-styrene[J]. Transportation Research Record, 2017, 2632(1): 130-139. doi: 10.3141/2632-14
    [141]
    YU Cai-hua, HU Kui, YANG Qi-lin, et al. Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations[J]. Polymers, 2021, 13(10): 1658-1679. doi: 10.3390/polym13101658
    [142]
    LIANG Ming, SU Lin-ping, LI Pei-zhao, et al. Investigating the rheological properties of carbon nanotubes/polymer composites modified asphalt[J]. Materials, 2020, 13(18): 4077-4096. doi: 10.3390/ma13184077
    [143]
    LIAO Gong-yun, FANG Xin, WANG Hao, et al. Durability improvement of poroelastic road surface with treated rubber: molecular dynamics simulation and experimental observations[J]. Journal of Cleaner Production, 2022, 369: 133334. doi: 10.1016/j.jclepro.2022.133334
    [144]
    FENG Lei, ZHAO Peng, CHEN Tong-dan, et al. Study on the influence of nano-OvPOSS on the compatibility, molecular structure, and properties of SBS modified asphalt by molecular dynamics simulation[J]. Polymers, 2022, 14(19): 4121-4139. doi: 10.3390/polym14194121
    [145]
    SONIBARE K, RUCKER G, ZHANG Li-qun. Molecular dynamics simulation on vegetable oil modified model asphalt[J]. Construction and Building Materials, 2021, 270: 121687. doi: 10.1016/j.conbuildmat.2020.121687
    [146]
    LIU Qi, HAN Bo, WANG Shu-yi, et al. Evaluation and molecular interaction of asphalt modified by rubber particles and used engine oil[J]. Journal of Cleaner Production, 2022, 375: 134222. doi: 10.1016/j.jclepro.2022.134222
    [147]
    ZHANG Xiao-rui, HAN Chao, OTTO F, et al. Evaluation of properties and mechanisms of waste plastic/rubber-modified asphalt[J]. Coatings, 2021, 11(11): 1365-1378. doi: 10.3390/coatings11111365
    [148]
    LIU Hao, ZHANG Zeng-ping, ZHU You-xin, et al. Modification of asphalt using polyurethanes synthesized with different isocyanates[J]. Construction and Building Materials, 2022, 327: 126959. doi: 10.1016/j.conbuildmat.2022.126959
    [149]
    FU Zhen, TANG Yu-jie, PENG Chong, et al. Properties of polymer modified asphalt by polyphosphoric acid through molecular dynamics simulation and experimental analysis[J]. Journal of Molecular Liquids, 2023, 382: 121999. doi: 10.1016/j.molliq.2023.121999
    [150]
    SAMIEADEL A, FINI E H. Interplay between wax and polyphosphoric acid and its effect on bitumen thermomechanical properties[J]. Construction and Building Materials, 2020, 243: 118194. doi: 10.1016/j.conbuildmat.2020.118194
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (20) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return