Citation: | LIANG Bo, LIAO Wei, ZHENG Jian-long. Review on molecular dynamics simulation for compatibilities of modifiers with asphalt[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 54-85. doi: 10.19818/j.cnki.1671-1637.2024.05.005 |
[1] |
ZHANG Tao-li, CHEN Yu-jing, HU Kui, et al. Investigating the compatibility mechanism of bitumen modified with photo-oxidative aging of polyethylene using molecular dynamics simulation[J]. Journal of Materials in Civil Engineering, 2023, 35(11): 04023424. doi: 10.1061/JMCEE7.MTENG-15955
|
[2] |
钱锦华, 董福营, 陈晓慧, 等. 聚合物改性沥青的高温流变性能研究进展[J]. 材料导报, 2023, 37(增2): 609-613.
QIAN Jin-hua, DONG Fu-ying, CHEN Xiao-hui, et al. Materials reports research progress on high temperature rheological properties of polymer modified asphalt[J]. Materials Reports, 2023, 37(S2): 609-613. (in Chinese)
|
[3] |
KIM H, LEE S J. Laboratory investigation of different standards of phase separation in crumb rubber modified asphalt binders[J]. Journal of Materials in Civil Engineering, 2013, 25(12): 1975-1978. doi: 10.1061/(ASCE)MT.1943-5533.0000751
|
[4] |
LIANG Ming, XIN Xue, FAN Wei-yu, et al. Experimental and simulation study of phase microstructure and storage stability of asphalt modified with ethylene-vinyl acetate[J]. Journal of Materials in Civil Engineering, 2019, 31(12): 04019288. doi: 10.1061/(ASCE)MT.1943-5533.0002931
|
[5] |
QIAN Cheng-duo, FAN Wei-yu, REN Fang-yong, et al. Influence of polyphosphoric acid (PPA) on properties of crumb rubber (CR) modified asphalt[J]. Construction and Building Materials, 2019, 227: 117094-117094. doi: 10.1016/j.conbuildmat.2019.117094
|
[6] |
LIU Sheng-jie, ZHOU Sheng-bo, PENG Ai-hong, et al. Analysis of the performance and mechanism of desulfurized rubber and low-density polyethylene compound-modified asphalt[J]. Journal of Applied Polymer Science, 2019, 136(45): 48194. doi: 10.1002/app.48194
|
[7] |
LI Jin, XIAO Fei-peng, AMIRKHANIAN S N. Storage, fatigue and low temperature characteristics of plasma treated rubberized binders[J]. Construction and Building Materials, 2019, 209: 454-462. doi: 10.1016/j.conbuildmat.2019.03.136
|
[8] |
LIN Peng, HUANG Wei-dong, TANG Nai-peng, et al. Performance characteristics of terminal blend rubberized asphalt with SBS and polyphosphoric acid[J]. Construction and Building Materials, 2017, 141: 171-182. doi: 10.1016/j.conbuildmat.2017.02.138
|
[9] |
ZHU Ji-qing, BALIEU R, WANG Hao-peng. The use of solubility parameters and free energy theory for phase behaviour of polymer-modified bitumen: a review[J]. Road Materials and Pavement Design, 2021, 22(4): 757-778. doi: 10.1080/14680629.2019.1645725
|
[10] |
LO PRESTI D, IZQUIERDO M A, JIMÉNEZ DEL BARCO CARRIÓN A. Towards storage-stable high-content recycled tyre rubber modified bitumen[J]. Construction and Building Materials, 2018, 172: 106-111. doi: 10.1016/j.conbuildmat.2018.03.226
|
[11] |
TAUSTE R, MORENO-NAVARRO F, SOL-SÁNCHEZ M, et al. Understanding the bitumen ageing phenomenon: a review[J]. Construction and Building Materials, 2018, 192: 593-609. doi: 10.1016/j.conbuildmat.2018.10.169
|
[12] |
GE Dong-dong, YAN Ke-zhen, YOU Zhan-ping, et al. Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene[J]. Construction and Building Materials, 2016, 126: 66-76. doi: 10.1016/j.conbuildmat.2016.09.014
|
[13] |
TANG Jun-cheng, ZHU Chong-zheng, ZHANG Heng-long, et al. Effect of liquid ASAs on the rheological properties of crumb rubber modified asphalt[J]. Construction and Building Materials, 2019, 194: 238-246. doi: 10.1016/j.conbuildmat.2018.11.028
|
[14] |
YAO Hui, YOU Zhan-ping, LI Liang, et al. Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy[J]. Construction and Building Materials, 2013, 38: 327-337. doi: 10.1016/j.conbuildmat.2012.08.004
|
[15] |
KAFLE B, BÖCKER U, WUBSHET S G, et al. Fourier-transform infrared spectroscopy for characterization of liquid protein solutions: a comparison of two sampling techniques[J]. Vibrational Spectroscopy, 2023, 124: 103490. doi: 10.1016/j.vibspec.2022.103490
|
[16] |
YIN Long, ZHOU Hong-bing, QUAN Yi-wu, et al. Prompt modification of styrene-butadiene rubber surface with trichloroisocyanuric acid by increasing chlorination temperature[J]. Journal of Applied Polymer Science, 2012, 124(1): 661-668. doi: 10.1002/app.35018
|
[17] |
POLACCO G, FILIPPI S. Vulcanization accelerators as alternative to elemental sulfur to produce storage stable SBS modified asphalts[J]. Construction and Building Materials, 2014, 58: 94-100. doi: 10.1016/j.conbuildmat.2014.02.018
|
[18] |
RASOOL R, SONG Pan, WANG Shi-feng. Thermal analysis on the interactions among asphalt modified with SBS and different degraded tire rubber[J]. Construction and Building Materials, 2018, 182: 134-143. doi: 10.1016/j.conbuildmat.2018.06.104
|
[19] |
ZHU Ji-qing, BALIEU R, LU Xiao-hu, et al. Numerical investigation on phase separation in polymer-modified bitumen: effect of thermal condition[J]. Journal of Materials Science, 2017, 52(11): 6525-6541. doi: 10.1007/s10853-017-0887-y
|
[20] |
ZHU Ji-qing, BALIEU R, LU Xiao-hu, et al. Microstructure evaluation of polymer-modified bitumen by image analysis using two-dimensional fast Fourier transform[J]. Materials and Design, 2018, 137: 164-175. doi: 10.1016/j.matdes.2017.10.023
|
[21] |
汪海年, 郑文华, 尤占平, 等. 聚合物改性剂和石油沥青相容性评价方法研究进展[J]. 交通运输工程学报, 2023, 23(1): 8-26. doi: 10.19818/j.cnki.1671-1637.2023.01.002
WANG Hai-nian, ZHENG Wen-hua, YOU Zhan-ping, et al. Research progress on compatibility evaluation methods of polymer modifiers and petroleum asphalts[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 8-26. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.01.002
|
[22] |
张恩浩, 刘爽, 单丽岩, 等. 石墨烯微胶囊沥青双机制愈合机理研究[J]. 中国公路学报, 2022, 35(7): 91-99. doi: 10.3969/j.issn.1001-7372.2022.07.007
ZHANG En-hao, LIU Shuang, SHAN Li-yan, et al. Study on double healing mechanism of graphene microcapsule asphalt binder[J]. China Journal of Highway and Transport, 2022, 35(7): 91-99. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.07.007
|
[23] |
全秀洁, 孔令云, 王昊敏, 等. 亲水基团对十二烷基阴离子乳化剂在SiO2表面吸附影响的分子动力学模拟与试验研究[J]. 复合材料学报, 2022, 39(6): 2894-2906.
QUAN Xiu-jie, KONG Ling-yun, WANG Hao-min, et al. Molecular dynamics simulation and experimental study on the influence of hydrophilic group on the adsorption of dodecyl anionic emulsifier on SiO2 surface[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2894-2906. (in Chinese)
|
[24] |
吕志田, 潘伶, 张晋铭, 等. 沥青-集料界面粘附机理的分子动力学模拟[J]. 材料科学与工程学报, 2022, 40(5): 809-815, 834.
LYU Zhi-tian, PAN Ling, ZHANG Jin-ming, et al. Molecular dynamics simulation of adhesion mechanism of asphalt-aggregate interface[J]. Journal of Materials Science and Engineering, 2022, 40(5): 809-815, 834. (in Chinese)
|
[25] |
汪海年, 丁鹤洋, 冯珀楠, 等. 沥青混合料分子模拟技术综述[J]. 交通运输工程学报, 2020, 20(2): 1-14. doi: 10.19818/j.cnki.1671-1637.2020.02.001
WANG Hai-nian, DING He-yang, FENG Po-nan, et al. Advances on molecular simulation technique in asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 1-14. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.001
|
[26] |
XU Ning, WANG Hai-nian, WANG Hui-min, et al. Research progress on resource utilization of waste cooking oil in asphalt materials: a state-of-the-art review[J]. Journal of Cleaner Production, 2023, 385: 135427. doi: 10.1016/j.jclepro.2022.135427
|
[27] |
GAO Ying-li, TIAN Wei-wei, LI Yue-lin, et al. Study on compatibility mechanism of plasticizer and asphalt based on molecular dynamics[J]. Materials and Design, 2023, 228: 111827. doi: 10.1016/j.matdes.2023.111827
|
[28] |
XU Guang-ji, YAO Yu-shi, MA Tao, et al. Experimental study and molecular simulation on regeneration feasibility of high-content waste tire crumb rubber modified asphalt[J]. Construction and Building Materials, 2023, 369: 130570. doi: 10.1016/j.conbuildmat.2023.130570
|
[29] |
HAN Yan-qiang, ALI I, WANG Zhi-long, et al. Machine learning accelerates quantum mechanics predictions of molecular crystals[J]. Physics Reports, 2021, 934: 1-71. doi: 10.1016/j.physrep.2021.08.002
|
[30] |
KAMACHI T, YOSHIZAWA K. Low-mode conformational search method with semiempirical quantum mechanical calculations: application to enantioselective organocatalysis[J]. Journal of Chemical Information and Modeling, 2016, 56(2): 347-353. doi: 10.1021/acs.jcim.5b00671
|
[31] |
POLKOVNIKOV M, GRAMOLIN A V, KAPLAN D E, et al. Experimental limit on nonlinear state-dependent terms in quantum theory[J]. Physical Review Letters, 2023, 130(4): 040202. doi: 10.1103/PhysRevLett.130.040202
|
[32] |
VAIWALA R, AYAPPA K G. A generic force field for simulating native protein structures using dissipative particle dynamics[J]. Soft Matter, 2021, 17(42): 9772-9785. doi: 10.1039/D1SM01194D
|
[33] |
SUN Huai. COMPASS: an ab initio force-field optimized for condensed-phase applications—overview with details on alkane and benzene compounds[J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338-7364. doi: 10.1021/jp980939v
|
[34] |
SUN Huai, JIN Zhao, YANG Chun-wei, et al. COMPASS Ⅱ: extended coverage for polymer and drug-like molecule databases[J]. Journal of Molecular Modeling, 2016, 22(2): 47. doi: 10.1007/s00894-016-2909-0
|
[35] |
SAVIN A V, MAZO M A. The COMPASS force field: validation for carbon nanoribbons[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 118: 113937. doi: 10.1016/j.physe.2019.113937
|
[36] |
ASCHE T S, BEHRENS P, SCHNEIDER A M. Validation of the COMPASS force field for complex inorganic-organic hybrid polymers[J]. Journal of Sol-Gel Science and Technology, 2017, 81(1): 195-204. doi: 10.1007/s10971-016-4185-y
|
[37] |
AKKERMANS R L C, SPENLEY N A, ROBERTSON S H. COMPASS Ⅲ: automated fitting workflows and extension to ionic liquids[J]. Molecular Simulation, 2021, 47(7): 540-551. doi: 10.1080/08927022.2020.1808215
|
[38] |
JORGENSEN W L, MAXWELL D S, TIRADO-RIVES J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236. doi: 10.1021/ja9621760
|
[39] |
CYGAN R T, LIANG Jian-jie, KALINICHEV A G. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field[J]. The Journal of Physical Chemistry B, 2004, 108(4): 1255-1266. doi: 10.1021/jp0363287
|
[40] |
CIEPLAK P, HOWARD A E, POWERS J P, et al. Elucidating the origin of conformational energy differences in substituted 1, 3-dioxanes: a combined theoretical and experimental study[J]. The Journal of Organic Chemistry, 1996, 61(11): 3662-3668. doi: 10.1021/jo951918p
|
[41] |
BROOKS B R, BROOKS III C L, MACKERELL JR A D, et al. CHARMM: the biomolecular simulation program[J]. Journal of Computational Chemistry, 2009, 30(10): 1545-1614. doi: 10.1002/jcc.21287
|
[42] |
XU Xiang-tian, LI Gao-sheng, ZHAO Yu-qin, et al. Analytical solutions for heat conduction problems with three kinds of periodic boundary conditions and their applications[J]. Applied Mathematics and Computation, 2023, 442: 127735. doi: 10.1016/j.amc.2022.127735
|
[43] |
GREISMAN J B, WILLMORE L, YEH C Y, et al. Discovery and validation of the binding poses of allosteric fragment hits to protein tyrosine phosphatase 1b: from molecular dynamics simulations to X-ray crystallography[J]. Journal of Chemical Information and Modeling, 2023, 63(9): 2644-2650. doi: 10.1021/acs.jcim.3c00236
|
[44] |
JANA G, MENDOZA-CORTES J L. Thermodynamics, kinetics, and optical properties of rotaxane: a first-principles molecular dynamics study[J]. The Journal of Physical Chemistry A, 2023, 127(12): 2671-2687. doi: 10.1021/acs.jpca.2c07774
|
[45] |
KUMAR A, SWAIN S, PRABHUDESAI V S. Inelastic electron scattering induced quantum coherence in molecular dynamics[J]. Nature Communications, 2023, 14(1): 2769. doi: 10.1038/s41467-023-38440-6
|
[46] |
DENG Shao-zhong, XUE Chang-feng, BAUMKETNER A, et al. Generalized image charge solvation model for electrostatic interactions in molecular dynamics simulations of aqueous solutions[J]. Journal of Computational Physics, 2013, 245: 84-106. doi: 10.1016/j.jcp.2013.03.027
|
[47] |
AL-NEMA M, GAURAV A, LEE V S. Designing of 2, 3-dihydrobenzofuran derivatives as inhibitors of PDE1B using pharmacophore screening, ensemble docking and molecular dynamics approach[J]. Computers in Biology and Medicine, 2023, 159: 106869. doi: 10.1016/j.compbiomed.2023.106869
|
[48] |
DITTRICH J, POPARA M, KUBIAK J, et al. Resolution of maximum entropy method-derived posterior conformational ensembles of a flexible system probed by fret and molecular dynamics simulations[J]. Journal of Chemical Theory and Computation, 2023, 19(8): 2389-2409. doi: 10.1021/acs.jctc.2c01090
|
[49] |
ALBERTÍ M, AMAT A, FARRERA L, et al. From the (NH3)2-5 clusters to liquid ammonia: molecular dynamics simulations using the NVE and NpT ensembles[J]. Journal of Molecular Liquids, 2015, 212: 307-315. doi: 10.1016/j.molliq.2015.09.016
|
[50] |
HAMILTON N E, MAHJOUB R, LAWS K J, et al. A blended NPT/NVT scheme for simulating metallic glasses[J]. Computational Materials Science, 2017, 130: 130-137. doi: 10.1016/j.commatsci.2017.01.006
|
[51] |
KIM M, KIM E, LEE S, et al. New method for constant-NPT molecular dynamics[J]. The Journal of Physical Chemistry A, 2019, 123(8): 1689-1699. doi: 10.1021/acs.jpca.8b09082
|
[52] |
INGEBRIGTSEN T, HEILMANN O J, TOXVAERD S, et al. Time reversible molecular dynamics algorithms with holonomic bond constraints in the NPH and NPT ensembles using molecular scaling[J]. The Journal of Chemical Physics, 2010, 132(15): 154106. doi: 10.1063/1.3363609
|
[53] |
HIYAMA M, KINJO T, HYODO S. Angular momentum form of Verlet algorithm for rigid molecules[J]. Journal of the Physical Society of Japan, 2008, 77(6): 064001. doi: 10.1143/JPSJ.77.064001
|
[54] |
BATCHO P F, SCHLICK T. Special stability advantages of position—Verlet over velocity-Verlet in multiple-time step integration[J]. The Journal of Chemical Physics, 2001, 115(9): 4019-4029. doi: 10.1063/1.1389855
|
[55] |
GHAEMI A, ARASTEH B. SFLA-based heuristic method to generate software structural test data[J]. Journal of Software: Evolution and Process, 2020, 32(1): e2228. doi: 10.1002/smr.2228
|
[56] |
REFSON K. Moldy: a portable molecular dynamics simulation program for serial and parallel computers[J]. Computer Physics Communications, 2000, 126(3): 310-329. doi: 10.1016/S0010-4655(99)00496-8
|
[57] |
LIU Yong-sheng, HU Pan-ru, XU Zhi-bo, et al. Tooth surface registration of spiral bevel gear based on improved genetic algorithm[J]. Journal of Physics: Conference Series, 2023, 2562(1): 012020. doi: 10.1088/1742-6596/2562/1/012020
|
[58] |
郑仕跃, 邹卓民, 周权峰, 等. 基于12成分模型和分子动力学的沥青材料性质模拟研究[J]. 铁道科学与工程学报, 2022, 19(5): 1331-1338.
ZHENG Shi-yue, ZOU Zhuo-min, ZHOU Quan-feng, et al. Simulation of asphalt properties based on 12-component model and molecular dynamics[J]. Journal of Railway Science and Engineering, 2022, 19(5): 1331-1338. (in Chinese)
|
[59] |
DING Yong-jie, HUANG Bao-shan, SHU Xiang. Modeling shear viscosity of asphalt through nonequilibrium molecular dynamics simulation[J]. Transportation Research Record, 2018, 2672(28): 235-243. doi: 10.1177/0361198118793316
|
[60] |
DING He-yang, WANG Hai-nian, QU Xin, et al. Towards an understanding of diffusion mechanism of bio-rejuvenators in aged asphalt binder through molecular dynamics simulation[J]. Journal of Cleaner Production, 2021, 299: 126927. doi: 10.1016/j.jclepro.2021.126927
|
[61] |
FALLAH F, KHABAZ F, KIM Y R, et al. Molecular dynamics modeling and simulation of bituminous binder chemical aging due to variation of oxidation level and saturate-aromatic-resin-asphaltene fraction[J]. Fuel, 2019, 237: 71-80. doi: 10.1016/j.fuel.2018.09.110
|
[62] |
HANSEN J S, LEMARCHAND C A, NIELSEN E, et al. Four-component united-atom model of bitumen[J]. The Journal of Chemical Physics, 2013, 138(9): 094508. doi: 10.1063/1.4792045
|
[63] |
LI D D, GREENFIELD M L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. doi: 10.1016/j.fuel.2013.07.012
|
[64] |
PAN Jie-lin, TAREFDER R A, HOSSAIN M I. Study of moisture impact on asphalt before and after oxidation using molecular dynamics simulations[J]. Transportation Research Record, 2016, 2574(1): 38-47. doi: 10.3141/2574-04
|
[65] |
QU Xin, FAN Ze-peng, LI Tian-shuai, et al. Understanding of asphalt chemistry based on the six-fraction method[J]. Construction and Building Materials, 2021, 311: 125241. doi: 10.1016/j.conbuildmat.2021.125241
|
[66] |
SUN Da-quan, SUN Guo-qiang, ZHU Xing-yi, et al. Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations[J]. Fuel, 2018, 211: 609-620. doi: 10.1016/j.fuel.2017.09.089
|
[67] |
XU Guang-ji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. doi: 10.1016/j.fuel.2016.10.021
|
[68] |
ZADSHIR M, OLDHAM D J, HOSSEINNEZHAD S, et al. Investigating bio-rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation[J]. Construction and Building Materials, 2018, 190: 392-402. doi: 10.1016/j.conbuildmat.2018.09.137
|
[69] |
ZHANG Li-qun, GREENFIELD M L. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation[J]. The Journal of Chemical Physics, 2007, 127(19): 194502. doi: 10.1063/1.2799189
|
[70] |
ZHANG Li-qun, GREENFIELD M L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy and Fuels, 2008, 22(5): 3363-3375. doi: 10.1021/ef700699p
|
[71] |
DICKIE J P, YEN T F. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39(14): 1847-1852. doi: 10.1021/ac50157a057
|
[72] |
WANG Jiang, FERGUSON A L. Mesoscale simulation of asphaltene aggregation[J]. The Journal of Physical Chemistry B, 2016, 120(32): 8016-8035. doi: 10.1021/acs.jpcb.6b05925
|
[73] |
AIREY G D. Rheological properties of styrene butadiene styrene polymer modified road bitumens[J]. Fuel, 2003, 82(14): 1709-1719. doi: 10.1016/S0016-2361(03)00146-7
|
[74] |
CHEN Ming-yuan, GENG Jiu-guang, XIA Cai-yun, et al. A review of phase structure of SBS modified asphalt: affecting factors, analytical methods, phase models and improvements[J]. Construction and Building Materials, 2021, 294: 123610. doi: 10.1016/j.conbuildmat.2021.123610
|
[75] |
GUO Fu-cheng, ZHANG Jiu-peng, PEI Jian-zhong, et al. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation[J]. Construction and Building Materials, 2020, 252: 118956. doi: 10.1016/j.conbuildmat.2020.118956
|
[76] |
FAKHRI M, SHAHRYARI E, AHMADI T. Investigate the use of recycled polyvinyl chloride (PVC) particles in improving the mechanical properties of stone mastic asphalt (SMA)[J]. Construction and Building Materials, 2022, 326: 126780. doi: 10.1016/j.conbuildmat.2022.126780
|
[77] |
ZHENG Wen-hua, WANG Hai-nian, CHEN Yu, et al. A review on compatibility between crumb rubber and asphalt binder[J]. Construction and Building Materials, 2021, 297: 123820. doi: 10.1016/j.conbuildmat.2021.123820
|
[78] |
SUN Guo-qiang, LI Bin, SUN Da-quan, et al. Chemo-rheological and morphology evolution of polymer modified bitumens under thermal oxidative and all-weather aging[J]. Fuel, 2021, 285: 118989. doi: 10.1016/j.fuel.2020.118989
|
[79] |
LI Chi-xuan, FAN Su-ying, XU Tao. Method for evaluating compatibility between SBS modifier and asphalt matrix using molecular dynamics models[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021207. doi: 10.1061/(ASCE)MT.1943-5533.0003863
|
[80] |
YANG Peng, LIU Dao-sheng, YAN Feng, et al. Application of the compatibility theory and the solubility parameter theory in SBS modification asphalt[J]. Petroleum Science and Technology, 2002, 20(3/4): 367-376.
|
[81] |
WANG Tao, HUANG Xiao-sheng, ZHANG Yu-zhen. Application of Hansen solubility parameters to predict compatibility of SBS-modified bitumen[J]. Journal of Materials in Civil Engineering, 2010, 22: 773-778. doi: 10.1061/(ASCE)MT.1943-5533.0000011
|
[82] |
LI Guan-nan, GU Zhao-jun, TAN Yi-qiu, et al. Research on the phase structure of styrene-butadiene-styrene modified asphalt based on molecular dynamics[J]. Construction and Building Materials, 2022, 326: 126933. doi: 10.1016/j.conbuildmat.2022.126933
|
[83] |
冯新军, 郝培文. SBS聚合物改性剂与基质沥青的配伍性研究[J]. 公路, 2007, 52(7): 186-190. doi: 10.3969/j.issn.0451-0712.2007.07.045
FENG Xin-jun, HAO Pei-wen. A study on consistency of SBS polymer modifier and asphalt[J]. Highway, 2007, 52(7): 186-190. (in Chinese) doi: 10.3969/j.issn.0451-0712.2007.07.045
|
[84] |
TANG Jin, WANG Hao, LIANG Ming. Molecular simulation and experimental analysis of interaction and compatibility between asphalt binder and styrene-butadiene-styrene[J]. Construction and Building Materials, 2022, 342: 128028. doi: 10.1016/j.conbuildmat.2022.128028
|
[85] |
LUO Hai-song, ZHENG Chuan-feng, YANG Xue, et al. Development of technology to accelerate SBS-modified asphalts swelling in dry modification mode[J]. Construction and Building Materials, 2022, 314: 125703. doi: 10.1016/j.conbuildmat.2021.125703
|
[86] |
LIANG Ming, HU Yong, KONG Xiang-jun, et al. Effects of SBS configuration on performance of high modulus bitumen based on dynamic mechanical analysis[J]. Kemija U Industriji, 2016, 65(7/8): 379-384.
|
[87] |
YU Cai-hua, HU Kui, YANG Qi-lin, et al. Multi-scale observation of oxidative aging on the enhancement of high-temperature property of SBS-modified asphalt[J]. Construction and Building Materials, 2021, 313: 125478. doi: 10.1016/j.conbuildmat.2021.125478
|
[88] |
LIN Peng, YAN Chuan-qi, HUANG Wei-dong, et al. Rheological, chemical and aging characteristics of high content polymer modified asphalt[J]. Construction and Building Materials, 2019, 207: 616-629. doi: 10.1016/j.conbuildmat.2019.02.086
|
[89] |
SU Man-man, ZHOU Juan-lan, LU Jing-zhou, et al. Using molecular dynamics and experiments to investigate the morphology and micro-structure of SBS modified asphalt binder[J]. Materials Today Communications, 2022, 30: 103082. doi: 10.1016/j.mtcomm.2021.103082
|
[90] |
GAO Ming-xing, CHEN Yao-lu, FAN Cong-hao, et al. Molecular dynamics study on the compatibility of asphalt and rubber powder with different component contents[J]. ACS Omega, 2022, 7(41): 36157-36164. doi: 10.1021/acsomega.2c02813
|
[91] |
DAN Han-cheng, WEN Xiang, CHEN Jia-qi, et al. A molecular dynamics approach to the interfacial characteristics between melamine formaldehyde resin and paving asphalts[J]. Construction and Building Materials, 2023, 365: 130051. doi: 10.1016/j.conbuildmat.2022.130051
|
[92] |
DALY W H, BALAMURUGAN S S, NEGULESCU I, et al. Characterization of crumb rubber modifiers after dispersion in asphalt binders[J]. Energy and Fuels, 2019, 33(4): 2665-2679. doi: 10.1021/acs.energyfuels.8b03559
|
[93] |
GUO Fu-cheng, ZHANG Jiu-peng, PEI Jian-zhong, et al. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation[J]. Frontiers of Structural and Civil Engineering, 2020, 14(2): 435-445. doi: 10.1007/s11709-019-0603-x
|
[94] |
KHALILI M, JADIDI K, KARAKOUZIAN M, et al. Rheological properties of modified crumb rubber asphalt binder and selecting the best modified binder using AHP method[J]. Case Studies in Construction Materials, 2019, 11: e00276. doi: 10.1016/j.cscm.2019.e00276
|
[95] |
NANJEGOWDA V H, BILIGIRI K P. Utilization of high contents of recycled tire crumb rubber in developing a modified-asphalt-rubber binder for road applications[J]. Resources, Conservation and Recycling, 2023, 192: 106909. doi: 10.1016/j.resconrec.2023.106909
|
[96] |
KONG Pei-pei, XU Gang, FU Liu-xu, et al. Chemical structure of rubber powder on the compatibility of rubber powder asphalt[J]. Construction and Building Materials, 2023, 392: 131769. doi: 10.1016/j.conbuildmat.2023.131769
|
[97] |
李昊, 郭荣鑫, 晏永, 等. 高模量沥青及其混合料低温性能研究进展[J]. 化工进展, 2022, 41(增1): 351-365.
LI Hao, GUO Rong-xin, YAN Yong, et al. Low temperature performance of high modulus asphalt binder and mixtures: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 351-365. (in Chinese)
|
[98] |
HU Kui, YU Cai-hua, CHEN Yu-jing, et al. Multiscale mechanisms of asphalt performance enhancement by crumbed waste tire rubber: insight from molecular dynamics simulation[J]. Journal Molecular Modeling, 2021, 27(6): 170. doi: 10.1007/s00894-021-04786-1
|
[99] |
LIU Qi, LIU Jin-zhou, YU Bin, et al. Study on the properties of waste oil-activated crumb rubber-modified asphalt based on molecular dynamics simulation and rheology[J]. Advances in Materials Science and Engineering, 2022, 2022: 7751479.
|
[100] |
JIAO Bo-zong, PAN Bao-feng, CHE Tian-kai. Evaluating impacts of desulfurization and depolymerization on thermodynamics properties of crumb rubber modified asphalt through molecular dynamics simulation[J]. Construction and Building Materials, 2022, 323: 126360. doi: 10.1016/j.conbuildmat.2022.126360
|
[101] |
QIAN Zhen-dong, CHEN Chun, JIANG Chen-long, et al. Development of a lightweight epoxy asphalt mixture for bridge decks[J]. Construction and Building Materials, 2013, 48: 516-520. doi: 10.1016/j.conbuildmat.2013.06.096
|
[102] |
SUN Yi-fan, ZHANG Yu-ge, XU Ke, et al. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes[J]. Journal of Applied Polymer Science, 2015, 132(12): 41694. doi: 10.1002/app.41694
|
[103] |
CONG Pei-liang, TIAN Yu, LIU Ning, et al. Investigation of epoxy-resin-modified asphalt binder[J]. Journal of Applied Polymer Science, 2016, 133(21): 43401. doi: 10.1002/app.43401
|
[104] |
LI Rong, FENG Feng, CHEN Ze-Zhong, et al. Sensitive detection of carcinoembryonic antigen using surface plasmon resonance biosensor with gold nanoparticles signal amplification[J]. Talanta, 2015, 140: 143-149. doi: 10.1016/j.talanta.2015.03.041
|
[105] |
WEI Kun, WANG Ya-chuan, MA Biao. Effects of microencapsulated phase change materials on the performance of asphalt binders[J]. Renewable Energy, 2019, 132: 931-940. doi: 10.1016/j.renene.2018.08.062
|
[106] |
YU Cai-hua, HU Kui, CHEN Yu-jing, et al. Compatibility and high temperature performance of recycled polyethylene modified asphalt using molecular simulations[J]. Molecular Simulation, 2021, 47(13): 1037-1049. doi: 10.1080/08927022.2021.1944624
|
[107] |
LIANG Ming, XIN Xue, FAN Wei-yu, et al. Phase behavior and hot storage characteristics of asphalt modified with various polyethylene: experimental and numerical characterizations[J]. Construction and Building Materials, 2019, 203: 608-620. doi: 10.1016/j.conbuildmat.2019.01.095
|
[108] |
YU Rui-en, FANG Chang-qing, LIU Pei, et al. Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite[J]. Applied Clay Science, 2015, 104: 1-7. doi: 10.1016/j.clay.2014.11.033
|
[109] |
YANG Xiao-long, SHEN Ai-qin, GUO Yin-chuan, et al. A review of nano layered silicate technologies applied to asphalt materials[J]. Road Materials and Pavement Design, 2021, 22(8): 1708-1733. doi: 10.1080/14680629.2020.1713199
|
[110] |
GUO Meng, TAN Yi-qiu, WANG Lin-bing, et al. Diffusion of asphaltene, resin, aromatic and saturate components of asphalt on mineral aggregates surface: molecular dynamics simulation[J]. Road Materials and Pavement Design, 2017, 18(S3): 149-158.
|
[111] |
GUO Meng, TAN Yi-qiu, WEI Jian-ming. Using molecular dynamics simulation to study concentration distribution of asphalt binder on aggregate surface[J]. Journal of Materials in Civil Engineering, 2018, 30(5): 04018075. doi: 10.1061/(ASCE)MT.1943-5533.0002258
|
[112] |
LIU Jin-zhou, YU Bin, HONG Qian-zhe. Molecular dynamics simulation of distribution and adhesion of asphalt components on steel slag[J]. Construction and Building Materials, 2020, 255: 119332. doi: 10.1016/j.conbuildmat.2020.119332
|
[113] |
LONG Zheng-wu, ZHOU Si-jia, JIANG Shao-ting, et al. Revealing compatibility mechanism of nanosilica in asphalt through molecular dynamics simulation[J]. Journal Molecular Modeling, 2021, 27(3): 81. doi: 10.1007/s00894-021-04697-1
|
[114] |
张恒龙, 朱崇政, 张葆琳, 等. 表面修饰纳米二氧化硅对沥青性能的影响[J]. 建筑材料学报, 2014, 17(1): 172-176. doi: 10.3969/j.issn.1007-9629.2014.01.031
ZHANG Heng-long, ZHU Chong-zheng, ZHANG Bao-lin, et al. Effect of nano-SiO2 with modified surface on properties of bitumen[J]. Journal of Building Materials, 2014, 17(1): 172-176. (in Chinese) doi: 10.3969/j.issn.1007-9629.2014.01.031
|
[115] |
WANG Li-ming, LI Zhu-ying. Molecular dynamics simulation and experimental analysis of the effect of ultrasonic disposal on the compatibility of nanoasphalt[J]. Coatings, 2022, 12(4): 424-444. doi: 10.3390/coatings12040424
|
[116] |
CAO Xue-juan, DENG Mei, DING Yong-jie, et al. Effect of photocatalysts modification on asphalt: investigations by experiments and theoretical calculation[J]. Journal of Materials in Civil Engineering, 2021, 33(5): 04021083. doi: 10.1061/(ASCE)MT.1943-5533.0003708
|
[117] |
XIE Yun-lan, YU Pan-deng, ZHAI Ming. Analysis of nano-ZnO-modified asphalt compatibility based on molecular dynamics[J]. Materials, 2023, 16(13): 4710. doi: 10.3390/ma16134710
|
[118] |
张明祥. 纳米氧化锌改性沥青及其抗老化性能研究[D]. 西安: 长安大学, 2015.
ZHANG Ming-xiang, Nanometer zinc oxide modified asphalt and its anti-aging properties research[D]. Xi'an: Chang'an University, 2015. (in Chinese)
|
[119] |
SAMIEADEL A, OLDHAM D, FINI E H. Multi-scale characterization of the effect of wax on intermolecular interactions in asphalt binder[J]. Construction and Building Materials, 2017, 157: 1163-1172. doi: 10.1016/j.conbuildmat.2017.09.188
|
[120] |
SU Man-man, SI Chun-di, ZHANG Zeng-ping, et al. Molecular dynamics study on influence of nano-ZnO/SBS on physical properties and molecular structure of asphalt binder[J]. Fuel, 2020, 263: 116777. doi: 10.1016/j.fuel.2019.116777
|
[121] |
HU Kui, YU Cai-hua, YANG Qi-lin, et al. Mechanistic study of graphene reinforcement of rheological performance of recycled polyethylene modified asphalt: a new observation from molecular dynamics simulation[J]. Construction and Building Materials, 2022, 320: 126263. doi: 10.1016/j.conbuildmat.2021.126263
|
[122] |
LI Li-min, LI Heng-zhen, TAN Yi-qiu, et al. Investigation of chloride release characteristic of chlorine-based anti-icing asphalt mixture[J]. Construction and Building Materials, 2021, 312: 125410. doi: 10.1016/j.conbuildmat.2021.125410
|
[123] |
DENG Mei, CAO Xue-juan, LI Zhi-hao, et al. Investigating properties and intermolecular interactions of sludge bio-oil modified asphalt[J]. Journal of Molecular Liquids, 2022, 360: 119415. doi: 10.1016/j.molliq.2022.119415
|
[124] |
DUAN Shao-chan, HU Jian-ying, MA Tao, et al. Anti-icing mechanism of an environmentally sustainable tenebrio molitor antifreeze protein modified asphalt binder via molecular dynamics simulations[J]. Construction and Building Materials, 2022, 360: 129580. doi: 10.1016/j.conbuildmat.2022.129580
|
[125] |
REN Shi-song, LIU Xue-yan, ZHANG Yi, et al. Multi-scale characterization of lignin modified bitumen using experimental and molecular dynamics simulation methods[J]. Construction and Building Materials, 2021, 287: 123058. doi: 10.1016/j.conbuildmat.2021.123058
|
[126] |
HUANG Ting, ZHANG Zeng-ping, WANG Li, et al. Study on the compatibility between polyurethane and asphalt based on experiment and molecular dynamics simulation[J]. Case Studies in Construction Materials, 2022, 17: e01424. doi: 10.1016/j.cscm.2022.e01424
|
[127] |
LU Peng-zhen, MA Yi-heng, YE Kai, et al. Analysis of high-temperature performance of polymer-modified asphalts through molecular dynamics simulations and experiments[J]. Construction and Building Materials, 2022, 350: 128903. doi: 10.1016/j.conbuildmat.2022.128903
|
[128] |
LU Peng-zhen, HUANG Si-min, SHEN Yang, et al. Mechanical performance analysis of polyurethane-modified asphalt using molecular dynamics method[J]. Polymer Engineering and Science, 2021, 61(9): 2323-2338. doi: 10.1002/pen.25760
|
[129] |
YU Xin, WANG Jun-yan, SI Jing-jing, et al. Research on compatibility mechanism of biobased cold-mixed epoxy asphalt binder[J]. Construction and Building Materials, 2020, 250: 118868. doi: 10.1016/j.conbuildmat.2020.118868
|
[130] |
FENG Lei, ZHAO Zhao, CHEN Tong-dan, et al. Comparative study of octavinyl oligomeric sesquisiloxane nanomaterial-modified asphalt using molecular dynamics method[J]. Polymers, 2022, 14(21): 4577-4597. doi: 10.3390/polym14214577
|
[131] |
ABE A A, OLIVIERO ROSSI C, CAPUTO P, et al. Spicy bitumen: curcumin effects on the rheological and adhesion properties of asphalt[J]. Materials, 2021, 14(7): 1622-1638. doi: 10.3390/ma14071622
|
[132] |
SAFAELDEEN G I, AL-MANSOB R A, AL-SABAEEI A M, et al. Investigating the mechanical properties and durability of asphalt mixture modified with epoxidized natural rubber (ENR) under short and long-term aging conditions[J]. Polymers, 2022, 14(21): 4726-4742. doi: 10.3390/polym14214726
|
[133] |
XU Ou-ming, YANG Xing-hao, XIANG Shun-lin, et al. Migration characteristic and model of chloride ions for NaCl-based salt storage asphalt mixtures[J]. Construction and Building Materials, 2021, 280: 122482. doi: 10.1016/j.conbuildmat.2021.122482
|
[134] |
ZHANG Feng-lei, LIU Xiao-dong, ZHANG Lei, et al. Preparation and properties of epoxy asphalt modified by biomimetic graphene oxide nanocomposites[J]. Journal of Materials in Civil Engineering, 2023, 35(1): 04022392. doi: 10.1061/(ASCE)MT.1943-5533.0004569
|
[135] |
LYU Guo-chun, GAO Feng-feng, LIU Guo-kui, et al. The properties of asphaltene at the oil-water interface: a molecular dynamics simulation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 515: 34-40.
|
[136] |
CAO Jia-wen, LUO Yao, ZHANG Heng-long, et al. Understanding the role of quaternary ammonium cations on the interaction of bitumen with clay: a molecular modeling study[J]. Construction and Building Materials, 2023, 364: 129970. doi: 10.1016/j.conbuildmat.2022.129970
|
[137] |
BEHNOOD A, MODIRI GHAREHVERAN M. Morphology, rheology, and physical properties of polymer-modified asphalt binders[J]. European Polymer Journal, 2019, 112: 766-791. doi: 10.1016/j.eurpolymj.2018.10.049
|
[138] |
GAO Ying-li, XIE Yu-tong, LIAO Mei-jie, et al. Study on the mechanism of the effect of graphene on the rheological properties of rubber-modified asphalt based on size effect[J]. Construction and Building Materials, 2023, 364: 129815. doi: 10.1016/j.conbuildmat.2022.129815
|
[139] |
YU Cai-hua, HU Kui, CHEN Gui-xiang, et al. Molecular dynamics simulation and microscopic observation of compatibility and interphase of composited polymer modified asphalt with carbon nanotubes[J]. Journal of Zhejiang University: Science A, 2021, 22(7): 528-546. doi: 10.1631/jzus.A2000359
|
[140] |
WANG Peng, DONG Ze-jiao, LIU Zhi-yang. Influence of carbon nanotubes on morphology of asphalts modified with styrene-butadiene-styrene[J]. Transportation Research Record, 2017, 2632(1): 130-139. doi: 10.3141/2632-14
|
[141] |
YU Cai-hua, HU Kui, YANG Qi-lin, et al. Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations[J]. Polymers, 2021, 13(10): 1658-1679. doi: 10.3390/polym13101658
|
[142] |
LIANG Ming, SU Lin-ping, LI Pei-zhao, et al. Investigating the rheological properties of carbon nanotubes/polymer composites modified asphalt[J]. Materials, 2020, 13(18): 4077-4096. doi: 10.3390/ma13184077
|
[143] |
LIAO Gong-yun, FANG Xin, WANG Hao, et al. Durability improvement of poroelastic road surface with treated rubber: molecular dynamics simulation and experimental observations[J]. Journal of Cleaner Production, 2022, 369: 133334. doi: 10.1016/j.jclepro.2022.133334
|
[144] |
FENG Lei, ZHAO Peng, CHEN Tong-dan, et al. Study on the influence of nano-OvPOSS on the compatibility, molecular structure, and properties of SBS modified asphalt by molecular dynamics simulation[J]. Polymers, 2022, 14(19): 4121-4139. doi: 10.3390/polym14194121
|
[145] |
SONIBARE K, RUCKER G, ZHANG Li-qun. Molecular dynamics simulation on vegetable oil modified model asphalt[J]. Construction and Building Materials, 2021, 270: 121687. doi: 10.1016/j.conbuildmat.2020.121687
|
[146] |
LIU Qi, HAN Bo, WANG Shu-yi, et al. Evaluation and molecular interaction of asphalt modified by rubber particles and used engine oil[J]. Journal of Cleaner Production, 2022, 375: 134222. doi: 10.1016/j.jclepro.2022.134222
|
[147] |
ZHANG Xiao-rui, HAN Chao, OTTO F, et al. Evaluation of properties and mechanisms of waste plastic/rubber-modified asphalt[J]. Coatings, 2021, 11(11): 1365-1378. doi: 10.3390/coatings11111365
|
[148] |
LIU Hao, ZHANG Zeng-ping, ZHU You-xin, et al. Modification of asphalt using polyurethanes synthesized with different isocyanates[J]. Construction and Building Materials, 2022, 327: 126959. doi: 10.1016/j.conbuildmat.2022.126959
|
[149] |
FU Zhen, TANG Yu-jie, PENG Chong, et al. Properties of polymer modified asphalt by polyphosphoric acid through molecular dynamics simulation and experimental analysis[J]. Journal of Molecular Liquids, 2023, 382: 121999. doi: 10.1016/j.molliq.2023.121999
|
[150] |
SAMIEADEL A, FINI E H. Interplay between wax and polyphosphoric acid and its effect on bitumen thermomechanical properties[J]. Construction and Building Materials, 2020, 243: 118194. doi: 10.1016/j.conbuildmat.2020.118194
|