Citation: | LI Chen, YAN Xin-ping, LIU Jia-lun, TANG Min, CHEN Guang-lin, LIN Nan. Design and application of ship remote-driving control system[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 333-347. doi: 10.19818/j.cnki.1671-1637.2024.05.021 |
[1] |
LI Zhi-hong, ZHANG Di, HAN Bing, et al. Risk and reliability analysis for maritime autonomous surface ship: a bibliometric review of literature from 2015 to 2022[J]. Accident: Analysis and Prevention, 2023, 187: 107090. doi: 10.1016/j.aap.2023.107090
|
[2] |
严新平, 贺亚鹏, 贺宜, 等. 水路交通技术发展趋势[J]. 交通运输工程学报, 2022, 22(4): 1-9. doi: 10.19818/j.cnki.1671-1637.2022.04.001
YAN Xin-ping, HE Ya-peng, HE Yi, et al. Development trends of waterway transportation technology[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 1-9. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.04.001
|
[3] |
NEGENBORN R R, GOERLANDT F, JOHANSEN T A, et al. Autonomous ships are on the horizon: here's what we need to know[J]. Nature, 2023, 615(7950): 30-33. doi: 10.1038/d41586-023-00557-5
|
[4] |
张宝晨, 耿雄飞, 李亚斌, 等. 船舶智能航行技术研发进展[J]. 科技导报, 2022, 40(14): 51-56.
ZHANG Bao-chen, GENG Xiong-fei, LI Ya-bin, et al. Development status and trend of intelligent navigation technology[J]. Science and Technology Review, 2022, 40(14): 51-56. (in Chinese)
|
[5] |
袁雪, 姜爱华. 基于IMO分级的MASS岸基操控人员法律地位探析[J]. 中国海洋大学学报(社会科学版), 2023(1): 34-48.
YUAN Xue, JIANG Ai-hua. Analysis of the legal status of shore control center operators of MASS based on IMO classification[J]. Journal of Ocean University of China (Social Sciences), 2023(1): 34-48. (in Chinese)
|
[6] |
严新平, 李晨, 刘佳仑, 等. 新一代航运系统体系架构与关键技术研究[J]. 交通运输系统工程与信息, 2021, 21(5): 22-29, 76.
YAN Xin-ping, LI Chen, LIU Jia-lun, et al. Architecture and key technologies for new generation of waterborne transportation system[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 22-29, 76. (in Chinese)
|
[7] |
CHENT T T, UTNE I B, WU B, et al. A novel system-theoretic approach for human-system collaboration safety: case studies on two degrees of autonomy for autonomous ships[J]. Reliability Engineering and System Safety, 2023, 237: 109388. doi: 10.1016/j.ress.2023.109388
|
[8] |
陈宇航, 朱宇, 韩冰, 等. 远程遥控模式下的船舶信息管理系统设计[J]. 上海船舶运输科学研究所学报, 2022, 45(5): 23-28.
CHEN Yu-hang, ZHU Yu, HAN Bing, et al. Design of an information management system for intelligent remote operation of ships[J]. Journal of Shanghai Ship and Shipping Research Institute, 2022, 45(5): 23-28. (in Chinese)
|
[9] |
LONGO G, ORLICH A, MERLO A, et al. Enabling real-time remote monitoring of ships by lossless protocol transformations[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(7): 7285-7295. doi: 10.1109/TITS.2023.3258365
|
[10] |
HÖYHTYÄ M, MARTIO J. Integrated satellite-terrestrial connectivity for autonomous ships: survey and future research directions[J]. Remote Sensing, 2020, 12(15): 2507. doi: 10.3390/rs12152507
|
[11] |
李昌振, 陈伟, 王觉, 等. 面向智能内河航运通信的无线信道测量与典型信道特征[J]. 交通运输工程学报, 2022, 22(4): 322-333. doi: 10.19818/j.cnki.1671-1637.2022.04.025
LI Chang-zhen, CHEN Wei, WANG Jue, et al. Wireless channel measurement and typical channel characteristics for intelligent inland navigation communications[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 322-333. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.04.025
|
[12] |
ZENG H, WANG T J, ZHANG J D, et al. A novel encryption scheme in ship remote-control against differential fault attack[J]. Applied Sciences, 2022, 12(16): 8278. doi: 10.3390/app12168278
|
[13] |
CHEN S J, XIONG X, WEN Y Q, et al. State compensation for maritime autonomous surface ships' remote-control[J]. Journal of Marine Science and Engineering, 2023, 11(2): 450. doi: 10.3390/jmse11020450
|
[14] |
周翔宇, 吴兆麟, 王凤武, 等. 自主船舶的定义及其自主水平的界定[J]. 交通运输工程学报, 2019, 19(6): 149-162. doi: 10.19818/j.cnki.1671-1637.2019.06.014
ZHOU Xiang-yu, WU Zhao-lin, WANG Feng-wu, et al. Definition of autonomous ship and its autonomy level[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 149-162. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2019.06.014
|
[15] |
WRÓBEL K, GIL M, MONTEWKA J. Identifying research directions of a remotely-controlled merchant ship by revisiting her system-theoretic safety control structure[J]. Safety Science, 2020, 129: 104797. doi: 10.1016/j.ssci.2020.104797
|
[16] |
CHENG Ting-ting, VEITCH E A, UTNE I B, et al. Analysis of human errors in human-autonomy collaboration in autonomous ships operations through shore control experimental data[J]. Reliability Engineering and System Safety, 2024, 246: 110080.
|
[17] |
DOMINGUEZ-PERY C, VUDDARAJU L N R. From human automation interactions to social human autonomy machine teaming in maritime transportation[C]//Springer. Re-imagining Diffusion and Adoption of Information Technology and Systems: A Continuing Conversation: IFIP WG 8.6 International Conference on Transfer and Diffusion of IT. Berlin: Springer, 2020: 45-56.
|
[18] |
ZHANG Ming-yang, ZHANG Di, YAO Hou-jie, et al. A probabilistic model of human error assessment for autonomous cargo ships focusing on human-autonomy collaboration[J]. Safety Science, 2020, 130: 104838.
|
[19] |
THIEME C A, RAMOS M A, HOLTE E A, et al. New Design Solutions and Procedures for Ensuring Meaningful Human Control and Interaction with Autonomy: Automated Ferries in Profile[M]//JOHANSSON T M, FERNANDEZ J E, DALAKLIS D, et al. Autonomous Vessels in Maritime Affairs: Law and Governance Implications. Berlin: Springer International Publishing, 2023: 213-242.
|
[20] |
向林浩, 唐伟强, 周增辉. 中国船级社"5G+"船舶实时远程检验技术解决方案[J]. 中国船检, 2021(1): 52-55.
XIANG Lin-hao, TANG Wei-qiang, ZHOU Zeng-hui. "5G+" ship real-time remote inspection technology solution of China Classification Society[J]. China Ship Survey, 2021(1): 52-55. (in Chinese)
|
[21] |
孟广玮, 张青亮, 姜旭阳. 深远海养殖工船船岸一体化系统构建[J]. 船舶工程, 2020, 42(增2): 83-85, 126.
MENG Guang-wei, ZHANG Qing-liang, JIANG Xu-yang. Construction of ship-shore integration system in deep ocean aquaculture engineering ship[J]. Ship Engineering, 2020, 42(S2): 83-85, 126. (in Chinese)
|
[22] |
高月红, 杨昊天, 尹宁, 等. 5G系统中CBGHARQ技术的分析与展望[J]. 通信技术, 2021, 54(2): 363-368.
GAO Yue-hong, YANG Hao-tian, YIN Ning, et al. Analysis and prospect of CBG HARQ technique in 5G system[J]. Communications Technology, 2021, 54(2): 363-368. (in Chinese)
|
[23] |
DUAN Wei, GU Jin-yuan, WEN Miao-wen, et al. Emerging technologies for 5G-IoV networks: applications, trends, and opportunities[J]. IEEE Network, 2020, 34(5): 283-289.
|
[24] |
WANG Le, LI Shi-jie, LIU Jia-lun, et al. Design and implementation of a testing platform for ship control: a case study on the optimal switching controller for ship motion[J]. Advances in Engineering Software, 2023, 178: 103427.
|
[25] |
JIANG Pei-wen, WEN Chao-kai, JIN Shi, et al. Wireless semantic communications for video conferencing[J]. IEEE Journal on Selected Areas in Communications, 2022, 41(1): 230-244.
|
[26] |
GOLAGHAZADEH F, COULOMBE S, ROBERT J M. Residual packet loss rate analysis of 2-D parity forward error correction[J]. Signal Processing: Image Communication, 2022, 102: 116597.
|
[27] |
LI T H, SIVARAMAN V, FAN L J, et al. Reparo: loss-resilient generative codec for video conferencing[J]. arXiv, 2023, DOI: 10.48550/arXiv.2305.14135.
|
[28] |
ZHAO Y, ZHOU A, CHEN X. Reducing latency in interactive live video chat using dynamic reduction factor[C]//IEEE. 2020 IEEE Wireless Communications and Networking Conference. New York: IEEE, 2020: 9120837.
|
[29] |
柳粟杰, 杨秀芝, 陈平平, 等. 实时视频传输的帧级别前向纠错信道编码[J]. 厦门大学学报(自然科学版), 2020, 59(6): 964-971.
LIU Su-jie, YANG Xiu-zhi, CHEN Ping-ping, et al. Frame-level forward error correction channel coding for real-time video transmission[J]. Journal of Xiamen University (Natural Science), 2020, 59(6): 964 -971. (in Chinese)
|
[30] |
张睿, 朱敏, 张冀, 等. 面向5G的递增冗余HARQ传输方案研究[J]. 北京邮电大学学报, 2018, 41(5): 92-97.
ZHANG Rui, ZHU Min, ZHANG Ji, et al. Study on 5G incremental redundancy HARQ transmission strategy[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(5): 92-97. (in Chinese)
|
[31] |
WANG H B, RANGANATHAN S V S, WESEL R D. Variable-length coding with shared incremental redundancy: design methods and examples[J]. IEEE Transactions on Communications, 2019, 67(9): 5981-5995.
|
[32] |
ZHAO Yun-bo, PAN Xiao-kang, YU Shi-ming. Predictive event-triggered control for disturbanced wireless networked control systems[J]. Journal of Systems Science and Complexity, 2021, 34(3): 1028-1043.
|
[33] |
ZHANG Xian-ming, HAN Qing-long, GE Xiao-hua, et al. Networked control systems: a survey of trends and techniques[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 7(1): 1-17.
|
[34] |
DENG Y, LÉCHAPPÉ V, MOULAY E, et al. Predictor-based control of time-delay systems: a survey[J]. International Journal of Systems Science, 2022, 53(12): 2496-2534.
|
[35] |
赵东东, 闫磊, 周兴文, 等. 基于Luenberger观测器的不确定系统鲁棒状态反馈设计[J]. 上海交通大学学报, 2024, 58(4): 492-497.
ZHAO Dong-dong, YAN Lei, ZHOU Xing-wen, et al. Robust state feedback design for uncertain systems based on Luenberger observer[J]. Journal of Shanghai Jiao Tong University, 2024, 58(4): 492-497. (in Chinese)
|
[36] |
佟世文, 钱殿伟, 于庆林, 等. 基于简化模型预测的网络化控制系统设计[J]. 控制工程, 2021, 28(2): 367-374.
TONG Shi-wen, QIAN Dian-wei, YU Qing-lin, et al. Networked control system design based on simplified model prediction[J]. Control Engineering of China, 2021, 28(2): 367-374. (in Chinese)
|
[37] |
范绍帅, 荣志强, 田辉, 等. 基于载波相位的高精度室内快速定位算法[J]. 通信学报, 2022, 43(1): 172-181.
FAN Shao-shuai, RONG Zhi-qiang, TIAN Hui, et al. High-precision indoor fast positioning algorithm based on carrier phase[J]. Journal on Communications, 2022, 43(1): 172-181. (in Chinese)
|
[38] |
MORALES J J, KASSAS Z M. Tightly coupled inertial navigation system with signals of opportunity aiding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1930-1948.
|
[39] |
JIANG Chang-hui, CHEN Shuai, CHEN Yu-wei, et al. Research on a chip scale atomic clock driven GNSS/SINS deeply coupled navigation system for augmented performance[J]. IET Radar, Sonar and Navigation, 2019, 13(2): 326-331.
|