Citation: | LIU Ke-zhong, KONG Wei, YU Yue-rong, WANG Wei-qiang, YUAN Zhi-tao, WU Xiao-lie. Recognition and classification method in multi-ship encounter scenarios based on topological graph[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 348-361. doi: 10.19818/j.cnki.1671-1637.2024.05.022 |
[1] |
CAI Ming-you, ZHANG Jin-fen, ZHANG Di, et al. Collision risk analysis on ferry ships in Jiangsu section of the Yangtze River based on AIS data[J]. Reliability Engineering and System Safety, 2021, 215: 107901. doi: 10.1016/j.ress.2021.107901
|
[2] |
文元桥, 杜磊, 黄亚敏, 等. 水上交通流宏观复杂度建模与仿真[J]. 系统仿真学报, 2017, 29(4): 826-831.
WEN Yuan-qiao, DU Lei, HUANG Ya-min, et al. Modeling and simulation of marine traffic macroscopic flow complexity[J]. Journal of System Simulation, 2017, 29(4): 826-831. (in Chinese)
|
[3] |
SZLAPCZYNSKI R, SZLAPCZYNSKA J. An analysis of domain-based ship collision risk parameters[J]. Ocean Engineering, 2016, 126: 47-56. doi: 10.1016/j.oceaneng.2016.08.030
|
[4] |
冮龙晖, 郑中义, 齐乐. AIS数据中船舶会遇信息的提取方法[J]. 中国科技论文, 2017, 12(7): 802-805. doi: 10.3969/j.issn.2095-2783.2017.07.016
GANG Long-hui, ZHENG Zhong-yi, QI Le. Extraction of ship-encounter information from AIS data[J]. China Sciencepaper, 2017, 12(7): 802-805. (in Chinese) doi: 10.3969/j.issn.2095-2783.2017.07.016
|
[5] |
马杰, 刘琪, 张春玮, 等. 基于AIS的数据时空分析及船舶会遇态势提取方法[J]. 中国安全科学学报, 2019, 29(5): 111-116.
MA Jie, LIU Qi, ZHANG Chun-wei, et al. A method for extracting ship encounter situation based on spatio-temporal analysis of AIS data[J]. China Safety Science Journal, 2019, 29(5): 111-116. (in Chinese)
|
[6] |
马杰, 李文楷, 张春玮, 等. 基于AIS数据的交汇水域船舶会遇态势辨识[J]. 中国航海, 2021, 44(1): 68-74.
MA Jie, LI Wen-kai, ZHANG Chun-wei, et al. Ship encounter situation recognition by processing AIS data from traffic intersection waters[J]. Navigation of China, 2021, 44(1): 68-74. (in Chinese)
|
[7] |
WANG Lun-wei, CHEN Guo-cheng, LIU Jiong-jiong, et al. Multi-ship collision avoidance decision-making model considering operation conflict under COLREGs[C]//IEEE. 6th International Conference on Transportation Information and Safety: New Infrastructure Construction for Better Transportation. New York: IEEE, 2021: 429-435.
|
[8] |
CHO Y, HAN J, KIM J. Efficient COLREG-compliant collision avoidance in multi-ship encounter situations[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1899-1911. doi: 10.1109/TITS.2020.3029279
|
[9] |
WANG Shao-bo, ZHANG Ying-jun, LI Lian-bo. A collision avoidance decision-making system for autonomous ship based on modified velocity obstacle method[J]. Ocean Engineering, 2020, 215: 107910. doi: 10.1016/j.oceaneng.2020.107910
|
[10] |
CHEN Peng, SHI Guo-you, LIU Shuang, et al. Pattern knowledge discovery of ship collision avoidance based on AIS data analysis[J]. International Journal of Performability Engineering, 2018, 14(10): 2449-2457.
|
[11] |
XIN Xu-ri, LIU Ke-zhong, LI Huan-huan, et al. Maritime traffic partitioning: an adaptive semi-supervised spectral regularization approach for leveraging multi-graph evolutionary traffic interactions[J]. Transportation Research Part C: Emerging Technologies, 2024, 164: 104670. doi: 10.1016/j.trc.2024.104670
|
[12] |
GAO Da-wei, ZHU Yong-sheng, YAN Ke, et al. Deep learning-based framework for regional risk assessment in a multi-ship encounter situation based on the transformer network[J]. Reliability Engineering and System Safety, 2024, 241: 109636. doi: 10.1016/j.ress.2023.109636
|
[13] |
LI Y P, LIU Z J, KAI J S. Study on complexity model and clustering method of ship to ship encountering risk[J]. Journal of Marine Science and Technology, 2019, 27(2): 8.
|
[14] |
胡文博, 黄蔚, 胡国超. 基于OPTICS聚类和关联分析的轨迹伴随模式分析[J]. 计算机与现代化, 2017(12): 82-87.
HU Wen-bo, HUANG Wei, HU Guo-chao. Trajectory adjoint pattern analysis based on OPTICS clustering and association analysis[J]. Computer and Modernization, 2017(12): 82-87. (in Chinese)
|
[15] |
BRCKO T, LUIN B. A decision support system using fuzzy logic for collision avoidance in multi-vessel situations at sea[J]. Journal of Marine Science and Engineering, 2023, 11(9): 1819. doi: 10.3390/jmse11091819
|
[16] |
甄荣, RIVEIRO M, 金永兴. 一种基于DBSCAN的船舶会遇实时识别方法[J]. 上海海事大学学报, 2018, 39(1): 1-5.
ZHEN Rong, RIVEIRO M, JIN Yong-xing. A real-time identification method to ship encounter based on DBSCAN[J]. Journal of Shanghai Maritime University, 2018, 39(1): 1-5. (in Chinese)
|
[17] |
ZHU Ji-xiang, GAO Miao, ZHANG An-min, et al. Multi-ship encounter situation identification and analysis based on AIS data and graph complex network theory[J]. Journal of Marine Science and Engineering, 2022, 10: 1536. doi: 10.3390/jmse10101536
|
[18] |
东昉, 徐建红, 苏开文. 船舶会遇态势的判断[J]. 航海技术, 2007(1): 2-5.
DONG Fang, XU Jian-hong, SU Kai-wen. Judgment of ship encounter situation[J]. Marine Technology, 2007(1): 2-5. (in Chinese)
|
[19] |
郑中义, 吴兆麟. 多船会遇避碰决策研究——Ⅰ多船会遇局面定义、划分及属于各类判断[J]. 航海技术, 2000(4): 9-12.
ZHENG Zhong-yi, WU Zhao-lin. Study on decision-making of collision avoidance in multi-ship encounter—Ⅰ definition, division and judgment of multi-ship encounter situation[J]. The Technology of Navigation, 2000(4): 9-12. (in Chinese)
|
[20] |
吴春杰, 李加庆. 浅谈多船会遇局面的界定与划分[J]. 武汉船舶职业技术学院学报, 2009, 8(4): 23-26.
WU Chun-jie, LI Jia-qing. Analysis of multiple encounter situations' definition and classification[J]. Journal of Wuhan Vocational and Technical Shipping College, 2009, 8(4): 23-26. (in Chinese)
|
[21] |
LI Tian-yu, XU Hui-qi, ZENG Wei-gui. Ship classification method for massive AIS trajectories based on GNN[J]. Journal of Physics: Conference Series, 2021, 2025(1): 012024.
|
[22] |
ZAKI A, ATTIA M, HEGAZY D, et al. Comprehensive survey on dynamic graph models[J]. International Journal of Advanced Computer Science and Applications, 2016, 7(2): 573-582.
|
[23] |
REN Cheng-hui, LO E, KAO B, et al. On querying historical evolving graph sequences[J]. Proceedings of the VLDB Endowment, 2011, 4(11): 726-737.
|
[24] |
GILLIOZ A, RIESEN K. Graph-based pattern recognition on spectral reduced graphs[J]. Pattern Recognition, 2023, 144: 109859.
|
[25] |
BUNKE H, SHEARER K. A graph distance metric based on the maximal common subgraph[J]. Pattern Recognition Letters, 1998, 19(3/4): 255-259.
|
[26] |
BAI Yun-sheng, DING Hao, BIAN Song, et al. SimGNN: a neural network approach to fast graph similarity computation[C]//ACM. 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 384-392.
|
[27] |
REN Wei-kai, JIN Ning-de, OUYANG Lei. Phase space graph convolutional network for chaotic time series learning[J]. IEEE Transactions on Industrial Informatics, 2024, 20(5): 7576-7584.
|
[28] |
RICHARD S, CHEN Dan-qi, CHRISTOPHER D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//NeurIPS. 27th Annual Conference on Neural Information Processing Systems. San Diego: NeurIPS, 2013: 926-935.
|
[29] |
XIN Xu-ri, LIU Ke-zhong, LOUGHNEY S, et al. Graph-based ship traffic partitioning for intelligent maritime surveillance in complex port waters[J]. Expert Systems with Applications, 2023, 231(11): 120825.
|
[30] |
HU Liang, NAEEM W, RAJABALLY E, et al. A multiobjective optimization approach for COLREGs-compliant path planning of autonomous surface vehicles verified on networked bridge simulators[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1167-1179.
|