Volume 24 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
LI Jie, WANG Li, WANG Xiao-yan, HU Zheng, WANG Xin, GAO Zi-yu, WANG Shi-min. Review on mechanism and key technologies for delaying thermal crack propagation of high-speed train brake discs[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 26-42. doi: 10.19818/j.cnki.1671-1637.2024.06.002
Citation: LI Jie, WANG Li, WANG Xiao-yan, HU Zheng, WANG Xin, GAO Zi-yu, WANG Shi-min. Review on mechanism and key technologies for delaying thermal crack propagation of high-speed train brake discs[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 26-42. doi: 10.19818/j.cnki.1671-1637.2024.06.002

Review on mechanism and key technologies for delaying thermal crack propagation of high-speed train brake discs

doi: 10.19818/j.cnki.1671-1637.2024.06.002
Funds:

National Natural Science Foundation of China 51675494

Pyramid Talent Training Project of Beijing University of Civil Engineering and Architecture JDJQ20200308

More Information
  • Author Bio:

    LI Jie(1977-), male, professor, PhD, lijie1@bucea.edu.cn

  • Corresponding author: WANG Xiao-yan(1980-), female, associate professor, PhD, wangxy252@163.com
  • Received Date: 2024-06-18
  • Publish Date: 2024-12-25
  • The fatigue thermal crack initiation and propagation mechanisms of train brake discs made of cast steel were analyzed. The effects of stress ratio, temperature, and overloading on the crack propagation rate of brake discs were described. Three key technologies for delaying crack propagation, including shot peening, laser cladding, and cold spraying, were systematically introduced. Future research directions for mitigating surface crack propagation in brake discs were proposed. Analysis results show that frequent braking and releasing in trains subject the disc surface to alternating thermal stress so that the formation of microcracks was induced at grain boundaries and defect sites within material. These microcracks subsequently propagate into radial cracks and eventually evolve into circumferential cracks. Microcracks are found to propagate radially under localized frictional forces, merging with primary radial cracks and increasing their length. It ultimately leads to brake disc failure. Plastic deformation of the disc surface is induced by shot peening and cold spraying treatments, transforming the residual tensile stress into residual compressive stress. Therefore, the propagation of fatigue cracks is slowed down. The microstructural properties of the base metal of brake disc are improved through laser cladding, enhancing its wear resistance at elevated temperatures. In the future, in-depth research should be carried out on the influence of wear on the propagation of surface cracks in brake discs, the mechanisms of grain refinement and dislocation density evolution during shot peening, and the correlation and quantitative relationships among shot peening parameters, such as shot diameter, coverage rate, and peening intensity. The application efficiency of high-speed laser cladding in the rapid prototyping of friction pairs should be further explored. Additionally, for cold spraying technology, attention should be paid to how to enhance the driving force for plastic deformation by increasing particle velocity and temperature, thereby reducing microstructural defects in the deposition layer.

     

  • loading
  • [1]
    MA Lie, DING Si-yuan, ZHANG Chao, et al. Study on the wear performance of high-speed railway brake materials at low temperatures under continuous braking conditions[J]. Wear, 2023, 512: 204556.
    [2]
    WANG Jin-nan, CHEN Yun-bo, ZUO Ling-li, et al. Evaluation of thermal fatigue life and crack morphology in brake discs of low-alloy steel for high-speed trains[J]. Materials, 2022, 15(19): 6837. doi: 10.3390/ma15196837
    [3]
    杨智勇, 臧家俊, 方丹琳, 等. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.

    YANG Zhi-yong, ZANG Jia-jun, FANG Dan-lin, et al. Thermal fatigue crack propagation mechanism of SiCp/A356 composites for urban rail train brake disc[J]. Journal of Materials Engineering, 2022, 50(7): 165-175. (in Chinese)
    [4]
    温玉颖, 张晓新, 燕青芝. 高铁制动盘失效原因和改进对策[J]. 机械工程学报, 2023, 59(14): 264-276.

    WEN Yu-ying, ZHANG Xiao-xin, YAN Qing-zhi. Failure causes and improvement countermeasures on high-speed brake disc[J]. Journal of Mechanical Engineering, 2023, 59(14): 264-276. (in Chinese)
    [5]
    吴志豪, 吴兵. 地铁列车轴装制动盘热力耦合仿真分析[J]. 机械强度, 2023, 45(1): 190-197.

    WU Zhi-hao, WU Bing. Thermal-mechanical coupling simulation analysis of axle-mounted brake disc of the subway train[J]. Journal of Mechanical Strength, 2023, 45(1): 190-197. (in Chinese)
    [6]
    MOGHANLOU M R, GOOGARCHIN H S. Three-dimensional coupled thermo-mechanical analysis for fatigue failure of a heavy vehicle brake disk: simulation of braking and cooling phases[J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2020, 234(13): 095440702092171.
    [7]
    吴射章, 陈鑫, 潘尹, 等. 铸钢轴装制动盘热裂纹形成和扩展机理[J]. 机车车辆工艺, 2018(6): 33-35.

    WU She-zhang, CHEN Xin, PAN Yin, et al. Mechanism of thermal crack formation and expansion of cast steel axle-mounted brake discs[J]. Locomotive and Rolling Stock Technology, 2018(6): 33-35. (in Chinese)
    [8]
    WANG Zhi-zhong, HAN Jia-min, DOMBLESKY J P, et al. Crack propagation and microstructural transformation on the friction surface of a high-speed railway brake disc[J]. Wear, 2019, 428: 45-54.
    [9]
    冯杰才. 钢厚板激光-GMAW复合双面同步横焊特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    FENG Jie-cai. Research on the characteristics of double-sided hybrid laser-GMAW synchronous horizontal welding of high-strength thicks steel plates[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [10]
    YE Shen, GONG Jian-guo, ZHANG Xian-cheng, et al. Effect of stress ratio on the fatigue crack propagation behavior of the nickel-based GH4169 alloy[J]. Acta Metallurgica Sinica (English Letters), 2017, 30: 809-821. doi: 10.1007/s40195-017-0567-6
    [11]
    石晓玲. 高速列车锻钢制动盘热疲劳寿命评估研究[D]. 北京: 北京交通大学, 2016.

    SHI Xiao-ling. Research on thermal fatigue life assessment of forged steel brake discs for high-speed trains[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [12]
    吕雪梅, 王曦, 罗明生. 考虑接触热阻的高速列车制动盘热机耦合行为分析[J]. 机械工程学报, 2021, 57(22): 296-304.

    LYU Xue-mei, WANG Xi, LUO Ming-sheng. Analysis of thermal-mechanical coupling behavior of brake disc of high speed trains considering thermal contact resistance[J]. Journal of Mechanical Engineering, 2021, 57(22): 296-304. (in Chinese)
    [13]
    刘禹, 单颖春, 刘献栋, 等. 高温对汽车灰铸铁制动盘热疲劳裂纹萌生寿命的影响[J]. 机械工程学报, 2019, 55(8): 97-105.

    LIU Yu, SHAN Ying-chun, LIU Xian-dong, et al. Effect of high temperature on thermal fatigue crack initiation life of automotive gray cast iron brake discs[J]. Chinese Journal of Mechanical Engineering, 2019, 55(8): 97-105. (in Chinese)
    [14]
    QU Jun-sheng, WANG Wen-jing, DONG Zi-yu, et al. Simulation analysis and verification of temperature and stress of wheel-mounted brake disc of a high-speed train[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 99. doi: 10.1186/s10033-022-00786-1
    [15]
    HE Quan-zhi, SHI Xiao-ling. Characteristics of microscopic crack and propagation life of forged steel brake disc for high-speed train[J]. Materials Express, 2021, 11(3): 434-443.
    [16]
    刘楠, 金星, 史建航, 等. 高速列车盘形制动器热-结构耦合方法研究[J]. 铁道科学与工程学报, 2024, 21(2): 456-464.

    LIU Nan, JIN Xing, SHI Jian-hang, et al. Study on the thermal-structural coupling method for disc brake of high-speed train[J]. Journal of Railway Science and Engineering, 2024, 21(2): 456-464. (in Chinese)
    [17]
    李杰, 高紫钰, 王晓燕, 等. 喷丸强化对车辆传动齿轮裂纹扩展影响研究综述[J]. 表面技术, 2024, 53(4): 1-19.

    LI Jie, GAO Zi-yu, WANG Xiao-yan, et al. A review on the effects of shot peening on crack growth of vehicle transmission gears[J]. Surface Technology, 2024, 53(4): 1-19. (in Chinese)
    [18]
    PARIS P, ERDOGAN F. A critical analysis of crack propagation laws[J]. Transactions of the ASME, 1963, 85(4): 528-533.
    [19]
    黄益昌, 张继旺, 苏凯新, 等. 高速列车铸钢制动盘表面裂纹应力强度因子分析[J]. 机械科学与技术, 2023, doi: 10.13433/j.cnki.1003-8728.20230262

    HUANG Yi-chang, ZHANG Ji-wang, SU Kai-xin, et al. Surface crack stress intensity factor analysis of cast steel brake disc for high-speed train[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, https://doi.org/10.13433/j.cnki.1003-8728.20230262. (in Chinese) doi: 10.13433/j.cnki.1003-8728.20230262
    [20]
    石晓玲, 李强, 杨广雪. 高速列车制动盘表面裂纹的扩展特性[J]. 北京交通大学学报, 2015, 39(4): 55-60.

    SHI Xiao-ling, LI Qiang, YANG Guang-xue. The fatigue crack propagation characteristic on brake disc surface of high speed train[J]. Journal of Beijing Jiaotong University, 2015, 39(4): 55-60. (in Chinese)
    [21]
    XIE Xiao-dong, LI Zhi-qiang, DOMBLESKY J P, et al. Analysis of deep crack formation and propagation in railway brake discs[J]. Engineering Failure Analysis, 2021, 128: 105600. doi: 10.1016/j.engfailanal.2021.105600
    [22]
    LU Chun, SHEN Jia-cheng, FU Qiang, et al. Research on radial crack propagation of railway brake disc under emergency braking conditions[J]. Engineering Failure Analysis, 2023, 143: 106877. doi: 10.1016/j.engfailanal.2022.106877
    [23]
    FORMAN R G, KEARNEY V E, ENGLER R M. Numerical analysis of crack propagation in cyclic loaded structures[J]. Journal of Basic Engineering, 1967, 89(3): 459-464. doi: 10.1115/1.3609637
    [24]
    HUANG Xiao-ping, MOAN T. Improved modeling of the effect of R-ratio on crack growth rate[J]. International Journal of Fatigue, 2007, 29(4): 591-602. doi: 10.1016/j.ijfatigue.2006.07.014
    [25]
    TIAN Fu-zheng, LI Le-yu, LIU Xin-ling. Effect of stress ratio on fatigue crack propagation behavior of single crystal superalloy[J]. Science of Advanced Materials, 2023, 15(1): 33-40. doi: 10.1166/sam.2023.4412
    [26]
    TANAKA K, AKINIWA Y. Fatigue thresholds of precracked specimens predicted by modified strip-yield model for plasticity-induced crack closure[J]. Theoretical and Applied Fracture Mechanics, 2022, 122: 103635. doi: 10.1016/j.tafmec.2022.103635
    [27]
    刘义伦, 何军, 刘驰, 等. 2524铝合金不同应力比下的疲劳裂纹扩展行为[J]. 锻压技术, 2018, 43(6): 134-141.

    LIU Yi-lun, HE Jun, LIU Chi, et al. Fatigue crack growth of aluminum alloy 2524 under different stress ratios[J]. Forging and Stamping Technology, 2018, 43(6): 134-141. (in Chinese)
    [28]
    徐礼达, 张瑞金, 赵硕. 基于弹塑性力学的疲劳裂纹扩展速率的研究[J]. 机械强度, 2023, 45(3): 607-612.

    XU Li-da, ZHANG Rui-jin, ZHAO Shuo. Study on fatigue crack growth rate based on elastic-plastic mechanics[J]. Journal of Mechanical Strength, 2023, 45(3): 607-612. (in Chinese)
    [29]
    ZHANG Xiao-dong, WANG Tian-jian, GONG Xiu-fang, et al. Low cycle fatigue properties, damage mechanism, life prediction and microstructure of MarBN steel: influence of temperature[J]. International Journal of Fatigue, 2021, 144: 106070. doi: 10.1016/j.ijfatigue.2020.106070
    [30]
    HUA Jian-min, YANG Zheng-tao, ZHOU Feng, et al. Effects of exposure temperature on low-cycle fatigue properties of Q690 high-strength steel[J]. Journal of Constructional Steel Research, 2022, 190: 107159. doi: 10.1016/j.jcsr.2022.107159
    [31]
    CHEN Y, PANG J C, ZOU C L, et al. High-temperature fatigue damage mechanism and strength prediction of vermicular graphite iron[J]. International Journal of Fatigue, 2023, 168: 107477. doi: 10.1016/j.ijfatigue.2022.107477
    [32]
    谢晓东, 李志强, 刘志成, 等. 服役高铁制动盘微观组织演变和力学性能表征[J]. 中南大学学报(自然科学版), 2022, 53(10): 3869-3878. doi: 10.11817/j.issn.1672-7207.2022.10.008

    XIE Xiao-dong, LI Zhi-qiang, LIU Zhi-cheng, et al. Characterization and evolution of microstructure and mechanical properties of serviced high-speed rail brake discs[J]. Journal of Central South University (Science and Technology), 2022, 53(10): 3869-3878. (in Chinese) doi: 10.11817/j.issn.1672-7207.2022.10.008
    [33]
    高靖添, 孟繁辉, 姚风龙, 等. CRH5型动车组制动盘异常磨耗原因分析[J]. 城市轨道交通研究, 2022, 25(1): 186-189, 192.

    GAO Jing-tian, MENG Fan-hui, YAO Feng-long, et al. Cause analysis of abnormal wear of CRH5 EMU brake disc[J]. Urban Mass Transit, 2022, 25(1): 186-189, 192. (in Chinese)
    [34]
    徐超, 佴启亮, 姚志浩, 等. 晶界氧化对GH4738高温合金疲劳裂纹扩展的作用[J]. 金属学报, 2017, 53(11): 1453-1460. doi: 10.11900/0412.1961.2017.00169

    XU Chao, NAI Qi-liang, YAO Zhi-hao, et al. Grain boundary oxidation effect of GH4738 super alloy on fatigue crack growth[J]. Acta Metallurgica Sinica, 2017, 53(11): 1453-1460. (in Chinese) doi: 10.11900/0412.1961.2017.00169
    [35]
    高飞, 吴波文, 杨俊英. 闸片材料参数与制动盘温度关系[J]. 中国有色金属学报, 2020, 30(4): 837-846.

    GAO Fei, WU Bo-wen, YANG Jun-ying. Relationship of pad material parameters and brake disk temperature field[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 837-846. (in Chinese)
    [36]
    熊缨, 陈冰冰, 郑三龙, 等. 16MnR钢在不同条件下的疲劳裂纹扩展规律[J]. 金属学报, 2009, 45(7): 849-855. doi: 10.3321/j.issn:0412-1961.2009.07.013

    XIONG Ying, CHEN Bing-bing, ZHENG San-long, et al. Fatigue crack propagation behavior of 16MnR steel under different conditions[J]. Acta Metallurgica Sinica, 2009, 45(7): 849-855. (in Chinese) doi: 10.3321/j.issn:0412-1961.2009.07.013
    [37]
    佴启亮, 董建新, 张麦仓, 等. GH4720Li合金疲劳裂纹扩展速率的温度敏感性[J]. 稀有金属材料与工程, 2017(10): 167-173.

    NAI Qi-liang, DONG Jian-xin, ZHANG Mai-cang, et al. Temperature sensitivity of fatigue crack extension rate of GH4720Li alloy[J]. Rare Metal Materials and Engineering, 2017(10): 167-173. (in Chinese)
    [38]
    陈年金, 高增梁, 雷月葆. 316L钢高温疲劳蠕变规律研究[J]. 压力容器, 2006(6): 6-9, 26. doi: 10.3969/j.issn.1001-4837.2006.06.002

    CHEN Nian-jin, GAO Zeng-liang, LEI Yue-bao. Studies on the law of fatigue and creep of 316L stainless steel at elevated temperature[J]. Pressure Vessel Technology, 2006(6): 6-9, 26. (in Chinese) doi: 10.3969/j.issn.1001-4837.2006.06.002
    [39]
    江河, 佴启亮, 徐超, 等. 镍基高温合金疲劳裂纹急速扩展敏感温度及成因[J]. 金属学报, 2023, 59(9): 1190-1200.

    JIANG He, NAI Qi-liang, XU Chao, et al. Sensitive temperature and reason of rapid fatigue crack propagation in nickel-based superalloy[J]. Acta Metallurgica Sinica, 2023, 59(9): 1190-1200. (in Chinese)
    [40]
    钱坤才, 吴射章, 乔青锋, 等. 高寒雨雪气候下高速动车组盘片摩擦副摩擦性能[J]. 西南交通大学学报, 2017, 52(6): 1188-1192. doi: 10.3969/j.issn.0258-2724.2017.06.020

    QIAN Kun-cai, WU She-zhang, QIAO Qing-feng, et al. Friction performance of brake disks and blocks for high speed EMU trains in cold, rainy and snowy weather[J]. Journal of Southwest Jiaotong University, 2017, 52(6): 1188-1192. (in Chinese) doi: 10.3969/j.issn.0258-2724.2017.06.020
    [41]
    张超, 马蕾, 丁昊昊, 等. 低温环境下制动参数对列车制动材料摩擦性能的影响[J]. 机械工程学报, 2021, 57(8): 230-239.

    ZHANG Chao, MA Lei, DING Hao-hao, et al. Effect of brake parameters on friction properties of brake materials in low temperature environment[J]. Journal of Mechanical Engineering, 2021, 57(8): 230-239. (in Chinese)
    [42]
    MA Lie, SHI Han-bo, DING Si-yuan, et al. Study on temperature field and surface damage characteristics of railway brake disc/pad at low temperatures[J]. Industrial Lubrication and Tribology, 2022, 74(5): 472-480. doi: 10.1108/ILT-11-2021-0440
    [43]
    RACKWITZ J, YU Qin, YANG Yang, et al. Effects of cryogenic temperature and grain size on fatigue-crack propagation in the medium-entropy CrCoNi alloy[J]. Acta Materialia, 2020, 200: 351-365. doi: 10.1016/j.actamat.2020.09.021
    [44]
    ZHAO Wei-dong, FENG Guo-qing, ZHANG Ming, et al. Effect of low temperature on fatigue crack propagation rates of DH36 steel and its butt weld[J]. Ocean Engineering, 2020, 196(1): 1068031.
    [45]
    丁思源, 马蕾, 石含波, 等. 低温环境对高速列车制动盘材料疲劳裂纹扩展性能影响研究[J]. 机械强度, 2022, 44(5): 1082-1090.

    DING Si-yuan, MA Lei, SHI Han-bo, et al. Study on influence of low temperature environment on fatigue crack growth performance of high-speed railway brake disc material[J]. Journal of Mechanical Strength, 2022, 44(5): 1082-1090. (in Chinese)
    [46]
    石晓玲, 李强, 赵方伟. 高速列车制动盘在不同制动工况下的残余热应力分布研究[J]. 铁道机车车辆, 2015, 35(4): 7-10, 49. doi: 10.3969/j.issn.1008-7842.2015.04.02

    SHI Xiao-ling, LI Qiang, ZHAO Fang-wei. Research on residual thermal stress of high speed train brake disk under different braking conditions[J]. Railway Locomotives and Car, 2015, 35(4): 7-10, 49. (in Chinese) doi: 10.3969/j.issn.1008-7842.2015.04.02
    [47]
    SALVATI E, ZHANG Hong-jia, FONG K S, et al. Separating plasticity-induced closure and residual stress contributions to fatigue crack retardation following an overload[J]. Journal of the Mechanics and Physics of Solids, 2017, 98: 222-235. doi: 10.1016/j.jmps.2016.10.001
    [48]
    洪圆, 李慧芳, 汤岚清, 等. 疲劳裂纹在TA2板中扩展及超载迟滞效应的实验研究[J]. 北京化工大学学报(自然科学版), 2015, 42(3): 100-104.

    HONG Yuan, LI Hui-fang, TANG Lan-qing, et al. Experimental study of the fatigue crack propagation and overloading retardation in TA2 plate[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2015, 42(3): 100-104. (in Chinese)
    [49]
    ZHOU Xiang, GAENSER H P, PIPPAN R. The effect of single overloads in tension and compression on the fatigue crack propagation behaviour of short cracks[J]. International Journal of Fatigue, 2016, 89: 77-86. doi: 10.1016/j.ijfatigue.2016.02.001
    [50]
    李亚智, 耿伟杰, 束一秀, 等. 高载作用下的疲劳裂纹闭合与残余应力作用[J]. 西北工业大学学报, 2014, 32(4): 529-535. doi: 10.3969/j.issn.1000-2758.2014.04.010

    LI Ya-zhi, GENG Wei-jie, SHU Yi-xiu, et al. Fatigue crack closure and residual stress effect of overload[J]. Journal of Northwestern Polytechnical University, 2014, 32(4): 529-535. (in Chinese) doi: 10.3969/j.issn.1000-2758.2014.04.010
    [51]
    赵凌燕, 贾文娜, 崔英浩, 等. 一次超载对裂纹前端残余应力重新分布的影响分析[J]. 热加工工艺, 2019, 48(21): 138-142.

    ZHAO Ling-yan, JIA Wen-na, CUI Ying-hao, et al. Effect analysis of a single overload on the redistribution of residual stress around crack tip[J]. Hot Working Technology, 2019, 48(21): 138-142. (in Chinese)
    [52]
    刘珏, 董世运, 王东星, 等. 高速列车制动盘设计中若干问题的研究现状[J]. 材料导报, 2023, 37(14): 73-78.

    LIU Jue, DONG Shi-yun, WANG Dong-xing, et al. Research status of several issues in the design of brake discs for high-speed trains[J]. Materials Reports, 2023, 37(14): 73-78. (in Chinese)
    [53]
    张吉银, 姚倡锋, 谭靓, 等. 喷丸强化残余应力对疲劳性能和变形控制影响研究进展[J]. 机械工程学报, 2023, 59(6): 46-60.

    ZHANG Ji-yin, YAO Chang-feng, TAN Liang, et al. Research progress of the effect of shot peening residual stress on fatigue performance and deformation control[J]. Journal of Mechanical Engineering, 2023, 59(6): 46-60. (in Chinese)
    [54]
    王成, 李开发, 胡兴远, 等. 喷丸强化残余应力对AISI 304不锈钢疲劳裂纹扩展行为的影响[J]. 表面技术, 2021, 50(9): 81-90, 151.

    WANG Cheng, LI Kai-fa, HU Xing-yuan, et al. Effect of shot peening-induced residual stress on the fatigue crack propagation behavior of AISI 304 stainless steel[J]. Surface Technology, 2021, 50(9): 81-90, 151. (in Chinese)
    [55]
    高国强, 陈金祥, 薛红前, 等. 7B50-T7751铝合金喷丸强化表面形态衍化及其对疲劳性能的影响[J]. 中国表面工程, 2022, 35(4): 187-195.

    GAO Guo-qiang, CHEN Jin-xiang, XUE Hong-qian, et al. Surface morphology evolution together with its effect on fatigue properties in shot peening of aluminum alloy 7B50-T7751[J]. China Surface Engineering, 2022, 35(4): 187-195. (in Chinese)
    [56]
    方军, 詹玉婷, 靳凯. 喷丸工艺对1Cr11Ni2W2MoV钢螺母表面性能和显微组织的影响[J]. 机械工程材料, 2022, 46(2): 31-34, 42.

    FANG Jun, ZHAN Yu-ting, JIN Kai. Effect of shot peening process on surface properties and microstructure of 1Cr11Ni2W2MoV steel nut[J]. Materials for Mechanical Engineering, 2022, 46(2): 31-34, 42. (in Chinese)
    [57]
    张亚龙, 吴鲁纪, 何肖飞, 等. 喷丸强化对Cr-Ni-Mo系高强钢的摩擦磨损性能影响[J]. 摩擦学学报, 2023, 43(9): 1072-1082.

    ZHANG Ya-long, WU Lu-ji, HE Xiao-fei, et al. Effect of shot peening on friction and wear behaviors of Cr-Ni-Mo high strength steel[J]. Tribology, 2023, 43(9): 1072-1082. (in Chinese)
    [58]
    KELLER S, HORSTMANN M, KASHAEV N, et al. Crack closure mechanisms in residual stress fields generated by laser shock peening: a combined experimental-numerical approach[J]. Engineering Fracture Mechanics, 2019, 221: 106630. doi: 10.1016/j.engfracmech.2019.106630
    [59]
    LIU Jin-xiang. Numerical analysis for effects of shot peening on fatigue crack growth[J]. International Journal of Fatigue, 2013, 50: 101-108. doi: 10.1016/j.ijfatigue.2012.02.010
    [60]
    吕鹤婷, 王建明, 刘兴睿. 喷丸残余应力对裂纹闭合效应影响的数值仿真[J]. 中国表面工程, 2016, 29(2): 102-110.

    LYU He-ting, WANG Jian-ming, LIU Xing-rui. Numerical simulation for residual stress fields of shot-peening on crack closure effect[J]. Chinese Surface Engineering, 2016, 29(2): 102-110. (in Chinese)
    [61]
    侯帅, 朱有利, 邱骥, 等. 喷丸强化对Ti6Al4V半椭圆表面裂纹J积分和裂纹扩展速率的影响[J]. 材料工程, 2019, 47(1): 139-146.

    HOU Shuai, ZHU You-li, QIU Ji, et al. Effect of shot peening on J-integral and crack progation rate of semi-elliptic surface crack on Ti6Al4V[J]. Journal of Materials Engineering, 2019, 47(1): 139-146. (in Chinese)
    [62]
    阴晓宁. TC4钛合金喷丸强化表面完整性研究[D]. 大连: 大连理工大学, 2015.

    YIN Xiao-ning. Surface integrity study on shot peened Ti-6Al-4V titanium alloy[D]. Dalian: Dalian University of Technology, 2015. (in Chinese)
    [63]
    QU Sheng-guan, DUAN Chen-feng, HU Xiong-feng, et al. Effect of shot peening on microstructure and contact fatigue crack growth mechanism of shaft steel[J]. Materials Chemistry and Physics, 2021(9): 125116.
    [64]
    金宸宇, 葛鸿浩, 张亚周, 等. 激光熔覆316L粉末多层堆积过程中熔覆层Cr元素分布机制研究[J]. 中国激光, 2023, 50(12): 129-141.

    JIN Chen-yu, GE Hong-hao, ZHANG Ya-zhou, et al. Distribution mechanism of Cr element in laser cladding layer during 316L powder multilayer stacking[J]. Chinese Journal of Lasers, 2023, 50(12): 129-141. (in Chinese)
    [65]
    TONOLINI P, MONTESANO L, POLA A, et al. The effect of laser-cladding on the wear behavior of gray cast iron brake disc[J]. Procedia Structural Integrity, 2021, 33: 1152-1161. doi: 10.1016/j.prostr.2021.10.129
    [66]
    RAJAEI H, MENAPACE C, STRAFFELINI G, et al. Characterization, wear and emission properties of MnS containing laser cladded brake disc[J]. Wear, 2022, 504: 204405.
    [67]
    时晓宇, 温道胜, 王守仁, 等. 激光熔覆灰铸铁制动盘Fe-Ni-Cr梯度复合涂层微观组织及高温摩擦磨损性能研究[J]. 中国激光, 2022, 49(2): 188-199.

    SHI Xiao-yu, WEN Dao-sheng, WANG Shou-ren, et al. Microstructure and high-temperature friction-wear performance of Fe-Ni-Cr gradient composite coating on laser-cladded gray cast iron brake disc[J]. Chinese Journal of Lasers, 2022, 49(2): 188-199. (in Chinese)
    [68]
    LI Jie, GU Jia-ling, ZHANG Yan-xiong, et al. Study on laser cladding process and friction characteristics of friction pairs of copper-based powder metallurgy materials[J]. Tribology International, 2023, 177: 107953. doi: 10.1016/j.triboint.2022.107953
    [69]
    葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808. doi: 10.11896/j.issn.1005-023X.2018.16.019

    GE Mao-zhong, XIANG Jian-yun, FAN Zhen. Effect of laser clad repair on crack growth rate of TC4 titanium alloy[J]. Materials Reports, 2018, 32(16): 2803-2808. (in Chinese) doi: 10.11896/j.issn.1005-023X.2018.16.019
    [70]
    吴影, 刘磊. 激光熔覆钴基涂层制动盘热疲劳及制动性能研究[C]//中国稀土学会. 中国稀土学会2021学术年会论文摘要集. 北京: 清华大学, 2021: 490-524.

    WU Ying, LIU Lei. Research on thermal fatigue and braking performance of laser-melted cobalt-based coated brake discs[C]//Chinese Society of Rare Earths. Abstracts of the 2021 Annual Conference of the Chinese Society of Rare Earths. Beijing: Tsinghua University, 2021: 490-524. (in Chinese)
    [71]
    WALKER K F, LOURENCO J M, SUN S, et al. Quantitative fractography and modelling of fatigue crack propagation in high strength AerMet100 steel repaired with a laser cladding process[J]. International Journal of Fatigue, 2017, 94: 288-301. doi: 10.1016/j.ijfatigue.2016.06.031
    [72]
    李洪玉, 魏连峰, 王泽明, 等. 激光熔覆铁基涂层的热疲劳性能[J]. 激光与光电子学进展, 2021, 58(7): 238-248.

    LI Hong-yu, WEI Lian-feng, WANG Ze-ming, et al. Thermal fatigue performance of laser cladding Fe-based coating[J]. Laser Optoelectronics Progress, 2021, 58(7): 238-248. (in Chinese)
    [73]
    陈冠秀, 安立周, 王硕, 等. 激光熔覆技术的研究概况及其发展趋势[J]. 机电产品开发与创新, 2022, 35(5): 15-18, 41.

    CHEN Guan-xiu, AN Li-zhou, WANG Shuo, et al. Research overview and development trend of laser cladding technology[J]. Development and Innovation of Machinery and Electrical Products, 2022, 35(5): 15-18, 41. (in Chinese)
    [74]
    于天彪, 宋博学, 郗文超, 等. 激光熔覆工艺参数对熔覆层形貌的影响及优化[J]. 东北大学学报(自然科学版), 2019, 40(4): 537-542.

    YU Tian-biao, SONG Bo-xue, XI Wen-chao, et al. Influence of laser cladding process parameters on morphology of cladding layer and its optimization[J]. Journal of Northeastern University (Natural Science), 2019, 40(4): 537-542. (in Chinese)
    [75]
    杨凯欣, 孙文磊, 肖奇, 等. 基于田口灰色关联法对Fe06-15% TiC熔覆层激光工艺参数的优化[J]. 材料导报, 2022, 36(24): 186-194.

    YANG Kai-xin, SUN Wen-lei, XIAO Qi, et al. Optimization of laser process parameters of Fe06-15% TiC cladding layer based on taguchi grey correlation method[J]. Materials Reports, 2022, 36(24): 186-194. (in Chinese)
    [76]
    NORHAFZAN B, AQIDA S N, CHIKARAKARA E, et al. Surface modification of AISI H13 tool steel by laser cladding with NiTi powder[J]. Applied Physics A, 2016, 122: 1-6.
    [77]
    王永东, 宫书林, 汤明日, 等. 激光熔覆工艺对高熵合金组织与性能影响[J]. 焊接学报, 2023, 44(8): 116-122.

    WANG Yong-dong, GONG Shu-lin, TANG Ming-ri, et al. Effects of laser cladding process on the microstructure and properties of high-entropy alloys[J]. Transactions of the China Welding Institution, 2023, 44(8): 116-122. (in Chinese)
    [78]
    杨俊芬, 曲凯, 杨景林, 等. 冷喷涂试件疲劳裂纹扩展规律试验研究[J]. 应用力学学报, 2022, 39(2): 291-296.

    YANG Jun-fen, QU Kai, YANG Jing-lin, et al. Experimental study on the fatigue crack growth law of cold sprayed specimens[J]. Chinese Journal of Applied Mechanics, 2022, 39(2): 291-296. (in Chinese)
    [79]
    邓楠, 董浩, 车洪艳, 等. 冷喷涂制备金属涂层及其在增材制造应用中的研究进展[J]. 表面技术, 2020, 49(3): 57-66.

    DENG Nan, DONG Hao, CHE Hong-yan, et al. The research progress on preparation of metal coatings by cold spraying and its application in additive manufacturing[J]. Surface Technology, 2020, 49(3): 57-66. (in Chinese)
    [80]
    熊天英, 王吉强. 中国科学院金属研究所冷喷涂技术研究进展[J]. 金属学报, 2023, 59(4): 537-546.

    XIONG Tian-ying, WANG Ji-qiang. Research progress of cold spray in Institute of Metal Research, Chinese Academy of Sciences[J]. Acta Metallurgica Sinica, 2023, 59(4): 537-546. (in Chinese)
    [81]
    GOANTA V, MUNTEANU C, MVFTV S, et al. Evaluation of the fatigue behavior and failure mechanisms of 4340 steel coated with WIP-C1 (Ni/CrC) by cold spray[J]. Materials, 2022, 15(22): 8116. doi: 10.3390/ma15228116
    [82]
    DAYANI S B, SHAHA S K, GHELICHI R, et al. The impact of AA7075 cold spray coating on the fatigue life of AZ31B cast alloy[J]. Surface and Coatings Technology, 2018, 337: 150-158. doi: 10.1016/j.surfcoat.2018.01.008
    [83]
    CAVALIERE P, SILVELLO A. Crack repair in aerospace aluminum alloy panels by cold spray[J]. Journal of Thermal Spray Technology, 2017, 26: 661-670. doi: 10.1007/s11666-017-0534-9
    [84]
    韩玮, 孟宪明, 赵杰, 等. 冷喷涂304不锈钢涂层的弯曲力学行为研究[J]. 材料工程, 2011(4): 49-53. doi: 10.3969/j.issn.1001-4381.2011.04.010

    HAN Wei, MENG Xian-ming, ZHAO Jie, et al. Study on bending behavior of 304 stainless steel coating by cold gas dynamic spraying[J]. Journal of Materials Engineering, 2011(4): 49-53. (in Chinese) doi: 10.3969/j.issn.1001-4381.2011.04.010
    [85]
    LI Yan-jiao, DONG Tian-shun, FU Bin-guo, et al. Study of the microstructure and properties of cold sprayed NiCr coating[J]. Journal of Materials Engineering and Performance, 2021, 30(12): 9067-9077. doi: 10.1007/s11665-021-06075-7
    [86]
    CHEN Hao, LIU Cheng-xin, CHU Xing-rong, et al. Corrosion behavior and microstructure of Cu-based composite coatings deposited by cold spraying[J]. Metals, 2022, 12(6): 955. doi: 10.3390/met12060955
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (77) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return