Citation: | LI Cong-ying, ZHANG Hong-tao, LI Kun, ZHANG Da-peng, JIA Jin-xiu, ZHAO Song-yang, HE Yuan. Review on travel quality evaluation methods for urban bicycle traffic system[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 43-65. doi: 10.19818/j.cnki.1671-1637.2024.06.003 |
[1] |
KRAUS S, KOCH N. Provisional COVID-19 infrastructure induces large, rapid increases in cycling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(15): e2024399118.
|
[2] |
QIN Y, KARIMI H A. Evolvement patterns of usage in a medium-sized bike-sharing system during the COVID-19 pandemic[J]. Sustainable Cities and Society, 2023, 96: 104669. doi: 10.1016/j.scs.2023.104669
|
[3] |
The City of Copenhagen Technical and Environmental Administration Traffic Department. Good, better, best—the city of copenhagen's bicycle strategy 2011-2025[R]. Copenhagen: The City of Copenhagen Technical and Environmental Administration Traffic Department, 2011.
|
[4] |
French Ministry of Ecological and Inclusive Transition. Bicycle and active mobilities plan[R]. Paris: French Ministry of Ecological and Inclusive Transition, 2018.
|
[5] |
COLLI E, KÜSTER F, ŽGANEC M. The state of national cycling strategies in Europe[R]. Brussels: European Cyclists' Federation, 2022.
|
[6] |
SZELL M, MIMAR S, PERLMAN T, et al. Growing urban bicycle networks[J]. Scientific Reports, 2022, 12: 6765. doi: 10.1038/s41598-022-10783-y
|
[7] |
杨琪瑶, 蔡军, 黄建中. 面向出行品质提升的自行车路网规划与设计策略研究[J]. 城市规划学刊, 2019, 6(6): 72-80.
YANG Qi-yao, CAI Jun, HUANG Jian-zhong. A research on bikeway network planning and design strategies for travel quality improvements[J]. Urban Planning Forum, 2019, 6(6): 72-80. (in Chinese)
|
[8] |
MA L, ETTEMA D, YE R N. Determinants of bicycling for transportation in disadvantagedneighbourhoods: evidence from Xi'an, China[J]. Transportation Research Part A: Policy and Practice, 2021, 145: 103-117. doi: 10.1016/j.tra.2021.01.009
|
[9] |
CHEVALIER A, CHARLEMAGNE M, XU L Q. Bicycle acceptance on campus: influence of the built environment and shared bikes[J]. Transportation Research Part D: Transport and Environment, 2019, 76: 211-235. doi: 10.1016/j.trd.2019.09.011
|
[10] |
CONTÒ C, BIANCHI N. E-bike motor drive: a review of configurations and capabilities[J]. Energies, 2022, 16(1): 160. doi: 10.3390/en16010160
|
[11] |
KAZEMZADEH K, RONCHI E. From bike to electric bike level-of-service[J]. Transport Reviews, 2022, 42(1): 6-31. doi: 10.1080/01441647.2021.1900450
|
[12] |
BAI L, LIU P, CHAN C Y, et al. Estimating level of service of mid-block bicycle lanes considering mixed traffic flow[J]. Transportation Research Part A: Policy and Practice, 2017, 101: 203-217. doi: 10.1016/j.tra.2017.04.031
|
[13] |
OESCHGER G, CARROLL P, CAULFIELD B. Micromobility and public transport integration: the current state of knowledge[J]. Transportation Research Part D: Transport and Environment, 2020, 89: 102628. doi: 10.1016/j.trd.2020.102628
|
[14] |
BUEHLER R, DILL J. Bikeway networks: a review of effects on cycling[J]. Transport Reviews, 2016, 36(1): 9-27. doi: 10.1080/01441647.2015.1069908
|
[15] |
MCLEOD D S. Multimodal arterial level of service[C]//TRB. Transportation Research E-Circular E-C018: 4th International Symposium on Highway Capacity. Washington DC: TRB, 2000: 221-233.
|
[16] |
TRB. Highway capacity manual 2000[R]. Washington DC: TRB, 2000.
|
[17] |
TRB. Highway capacity manual 2010[R]. Washington DC: TRB, 2010.
|
[18] |
TRB. Highway capacity manual 2016[R]. Washington DC: TRB, 2016.
|
[19] |
TRB. Highway capacity manual 2022[R]. Washington DC: TRB, 2022.
|
[20] |
彭锐, 杨佩昆. 自行车交通流基本模型[J]. 同济大学学报: 自然科学版, 1993, 21(4): 463-468.
PENG Rui, YANG Pei-kun. The basic model of bicycle traffic flow[J]. Journal of Tongji University (Natural Science), 1993, 21(4): 463-468. (in Chinese)
|
[21] |
魏恒, 任福田, 刘小明. 自行车行驶状态与自行车道通行能力关系研究[J]. 中国公路学报, 1993, 6(4): 60-64, 71.
WEI Heng, REN Fu-tian, LIU Xiao-ming. Research on the relationship between bicycle traveling state and bicycle road capacity[J]. China Journal of Highway and Transport, 1993, 6(4): 60-64, 71. (in Chinese)
|
[22] |
单晓峰, 王炜, 王昊, 等. 非拥挤路段自行车交通流特性研究[J]. 交通与计算机, 2006, 24(6): 41-43, 64.
SHAN Xiao-feng, WANG Wei, WANG Hao, et al. Properties of bicycle flow in non-congested road[J]. Computer and Communications, 2006, 24(6): 41-43, 64. (in Chinese)
|
[23] |
梁春岩. 自行车交通流特性及其应用研究[D]. 长春: 吉林大学, 2007.
LIANG Chun-yan. Study on characteristics and application of bicycle traffic flow[D]. Changchun: Jilin University, 2007. (in Chinese)
|
[24] |
刘金广, 于泉, 荣建, 等. 信号交叉口行人自行车聚集群交通特性[J]. 北京工业大学学报, 2010, 36(2): 229-234.
LIU Jin-guang, YU Quan, RONG Jian, et al. Traffic characteristics research of the pedestrians and bicycles conglomeration at signalized intersection[J]. Journal of Beijing University of Technology, 2010, 36(2): 229-234. (in Chinese)
|
[25] |
于泉, 史丽平, 李宁. 信号交叉口自行车群通行阶段划分[J]. 交通运输系统工程与信息, 2011, 11(4): 135-139. doi: 10.3969/j.issn.1009-6744.2011.04.021
YU Quan, SHI Li-ping, LI Ning. Passing stage division of bicycle groups at signalized intersection[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(4): 135-139. (in Chinese) doi: 10.3969/j.issn.1009-6744.2011.04.021
|
[26] |
NAGEL K, SCHRECKENBERG M. A cellular automaton model for freeway traffic[J]. Journal De Physique I, 1992, 2(12): 2221-2229. doi: 10.1051/jp2:1992262
|
[27] |
YAO D Y, ZHANG Y, LI L, et al. Behavior modeling and simulation for conflicts in vehicles-bicycles mixed flow[J]. IEEE Intelligent Transportation Systems Magazine, 2009, 1(2): 25-30. doi: 10.1109/MITS.2009.933863
|
[28] |
张兴强, 汪滢, 胡庆华. 交叉口混合交通流元胞自动机模型及仿真研究[J]. 物理学报, 2014, 63(1): 90-97. doi: 10.3969/j.issn.1000-0364.2014.01.015
ZHANG Xing-qiang, WANG Ying, HU Qing-hua. Research and simulation on cellular automaton model of mixed traffic flow at intersection[J]. Acta Physica Sinica, 2014, 63(1): 90-97. (in Chinese) doi: 10.3969/j.issn.1000-0364.2014.01.015
|
[29] |
JIN S, QU X B, XU C, et al. An improved multi-value cellular automata model for heterogeneous bicycle traffic flow[J]. Physics Letters A, 2015, 379(39): 2409-2416. doi: 10.1016/j.physleta.2015.07.031
|
[30] |
张晓星. 基于多值元胞自动机的电动车-自行车交通流特性模拟研究[D]. 重庆: 重庆交通大学, 2016.
ZHANG Xiao-xing. Based on multi-value electric bicycle-bicycle traffic flow characteristics of cellular automata simulation study[D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese)
|
[31] |
李黎山, 李冰, 成卫. 基于空间比和感知密度的混合自行车交通流模型[J]. 交通运输系统工程与信息, 2019, 19(1): 104-110, 150.
LI Li-shan, LI Bing, CHENG Wei. Mixed bicycle traffic flow model based on space split and perceived density[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(1): 104-110, 150. (in Chinese)
|
[32] |
HELBING D, MOLNÁR P. Social force model for pedestrian dynamics[J]. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1995, 51(5): 4282-4286.
|
[33] |
梁肖, 毛保华, 许奇. 自行车微观行为的心理生理力模型[J]. 交通运输系统工程与信息, 2012, 12(2): 91-97. doi: 10.3969/j.issn.1009-6744.2012.02.014
LIANG Xiao, MAO Bao-hua. XU Qi. Psychological-physical force model for bicycle dynamics[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(2): 91-97. (in Chinese) doi: 10.3969/j.issn.1009-6744.2012.02.014
|
[34] |
董合英. 基于社会力模型的双向自行车交通流仿真研究[D]. 西安: 长安大学, 2021.
DONG He-ying. Simulation research on two-way bicycle traffic flow based on social force model[D]. Xi'an: Chang'an University, 2021. (in Chinese)
|
[35] |
倪颖, 李逸昕, 李旭红, 等. 机非物理隔离路段非机动车行为建模仿真[J]. 同济大学学报(自然科学版), 2019, 47(6): 778-786.
NI Ying, LI Yi-xin, LI Xu-hong, et al. Modeling and simulation of the non-motorized traffic flow on physically separated bicycle roadways[J]. Journal of Tongji University (Natural Sciences), 2019, 47(6): 778-786. (in Chinese)
|
[36] |
YAN X C, CHEN J, BAI H, et al. Influence factor analysis of bicycle free-flow speed for determining the design speeds of separated bicycle lanes[J]. Information, 2020, 11(10): 459. doi: 10.3390/info11100459
|
[37] |
BOTMA H. Method to determine level of service for bicycle paths and pedestrian-bicycle paths[J]. Transportation Research Record, 1995(1502): 38-44.
|
[38] |
DIXON L B. Bicycle and pedestrian level-of-service performance measures and standards for congestion management systems[J]. Transportation Research Record, 1996(1538): 1-9.
|
[39] |
LANDIS B W, VATTIKUTI V R, BRANNICK M T. Real-time human perceptions: toward a bicycle level of service[J]. Transportation Research Record, 1997(1578): 119-126.
|
[40] |
LANDIS B W, VATTIKUTI V R, OTTENBERG R M, et al. Intersection level of service for the bicycle through movement[J]. Transportation Research Record, 2003(1828): 101-106.
|
[41] |
PETRITSCH T A, LANDIS B W, HUANG H F, et al. Bicycle level of service for arterials[J]. Transportation Research Record, 2007(2031): 34-42.
|
[42] |
DOWLING R. Multimodal level of service analysis for urban streets: users guide[R]. Washington DC: Transportation Research Board of the National Academies, 2008.
|
[43] |
LI Zhi-bin, WANG Wei, SHAN Xiao-feng, et al. Analysis of bicycle passing events for LOS evaluation on physically separated bicycle roadways in China[C]//TRB. TRB 2010 Annual Meeting. Washington DC: TRB, 2010: 1-16.
|
[44] |
於昊, 陈峻, 谢之权. 自行车-行人共享道服务水平研究[J]. 城市交通, 2012, 10(1): 75-79, 60. doi: 10.3969/j.issn.1672-5328.2012.01.011
YU Hao, CHEN Jun, XIE Zhi-quan. Level of service model on urban cycle-pedestrian shared road[J]. Urban Transport of China, 2012, 10(1): 75-79, 60. (in Chinese) doi: 10.3969/j.issn.1672-5328.2012.01.011
|
[45] |
方雪丽, 陈小鸿, 叶建红. 自行车交通服务品质分级方法[J]. 同济大学学报(自然科学版), 2016, 44(10): 1573-1578. doi: 10.11908/j.issn.0253-374x.2016.10.015
FANG Xue-li, CHEN Xiao-hong, YE Jian-hong. Method of classification criteria about quality of service for bicycle lanes[J]. Journal of Tongji University (Natural Science), 2016, 44(10): 1573-1578. (in Chinese) doi: 10.11908/j.issn.0253-374x.2016.10.015
|
[46] |
同济大学交通运输工程学院. 改善非机动化出行环境的规范流程与方法[J]. 中国公路, 2017(11): 124-125. doi: 10.3969/j.issn.1006-3897.2017.11.047
College of Transportation Engineering, Tongji University. Standardized processes and methods to improve the non-motorized travel environment[J]. China Highway, 2017(11): 124-125. (in Chinese) doi: 10.3969/j.issn.1006-3897.2017.11.047
|
[47] |
BEURA S K, KUMAR N K, BHUYAN P K. Level of service for bicycle through movement at signalized intersections operating under heterogeneous traffic flow conditions[J]. Transportation in Developing Economies, 2017, 3(2): 21. doi: 10.1007/s40890-017-0051-z
|
[48] |
BEURA S K, CHELLAPILLA H, BHUYAN P K. Urban road segment level of service based on bicycle users' perception under mixed traffic conditions[J]. Journal of Modern Transportation, 2017, 25(2): 90-105. doi: 10.1007/s40534-017-0127-9
|
[49] |
MAJUMDAR B B, MITRA S. Development of level of service criteria for evaluation of bicycle suitability[J]. Journal of Urban Planning and Development, 2018, 144(2): 04018012. doi: 10.1061/(ASCE)UP.1943-5444.0000432
|
[50] |
OKON I E, MORENO C A. Bicycle level of service model for the Cycloruta, Bogota, Colombia[J]. Romanian Journal of Transport Infrastructure, 2019, 8(1): 1-33. doi: 10.2478/rjti-2019-0001
|
[51] |
ZHANG S, LIANG J, WANG Z W. Evaluation method for bicycle lane level of service based on user perception and capacity simulation[J]. Journal of Applied Science and Engineering, 2019, 22(3): 539-548.
|
[52] |
BEURA S K, KUMAR K V, SUMAN S, et al. Service quality analysis of signalized intersections from the perspective of bicycling[J]. Journal of Transport and Health, 2020, 16: 100827. doi: 10.1016/j.jth.2020.100827
|
[53] |
柴攀. 城市自行车出行者环境感知与行为研究[D]. 西安: 西安建筑科技大学, 2016.
CHAI Pan. Bicyclists' travel environments perception and travel behavior of urban streets[D]. Xi'an: Xi'an University of Architecture and Technology, 2016. (in Chinese)
|
[54] |
VIVEK A K, MOHAPATRA S S. Level of service analysis of rail road grade crossing from the perspective of walking and bicycling: a perception based study[J]. Transportation Planning and Technology, 2023, 46(4): 499-524. doi: 10.1080/03081060.2023.2201595
|
[55] |
WILLIAM JEFFREY D. Bicycle safety evaluation[D]. Auburn: Auburn University. 1987.
|
[56] |
EPPERSON B. Evaluating suitability of roadways for bicycle use: toward a cycling level-of-service standard[J]. Transportation Research Record, 1994(1438): 9-16.
|
[57] |
LANDIS B W. Bicycle interaction hazard score: a theoretical model[J]. Transportation Research Record, 1994(1438): 3-8.
|
[58] |
HARKEY D L, STEWART J R. Evaluation of shared-use facilities for bicycles and motor vehicles[J]. Transportation Research Record, 1997(1578): 111-118.
|
[59] |
NOËL N, LECLERC C, LEE-GOSSELIN M. CRC index: compatibility of roads for cyclists in rural and urban fringe areas[C]//TRB. TRB 2003 Annual Meeting. Washington DC: TRB, 2003: 1-20.
|
[60] |
JONES E G, CARLSON T D. Development of bicycle compatibility index for rural roads in Nebraska[J]. Transportation Research Record, 2003(1828): 124-132.
|
[61] |
RIVERA OLSSON S, ELLDÉR E. Are bicycle streets cyclist-friendly? Micro-environmental factors for improving perceived safety when cycling in mixed traffic[J]. Accident Analysis and Prevention, 2023, 184: 107007. doi: 10.1016/j.aap.2023.107007
|
[62] |
ALLEN-MUNLEY C. Development of a multivariate logistic model to predict bicycle route safety in urban areas[D]. Newark: NewJersey Institute of Technology, 2003.
|
[63] |
CARTER D L, HUNTER W W, ZEGEER C V, et al. Bicyclist intersection safety index[J]. Transportation Research Record, 2007(2031): 18-24.
|
[64] |
AKAR G, WANG K L. Street intersection characteristics and their impacts on perceived bicycling safety[R]. Columbus: Ohio Department of Transportation, 2018.
|
[65] |
ADINARAYANA B, MIR M S. Development of bicycle safety index models for safety of bicycle flow at 3-legged junctions on urban roads under mixed traffic conditions[J]. Transportation Research Procedia, 2020, 48: 1227-1243. doi: 10.1016/j.trpro.2020.08.145
|
[66] |
ASADI-SHEKARI Z, MOEINADDINI M, ZALY SHAH M. A bicycle safety index for evaluating urban street facilities[J]. Traffic Injury Prevention, 2015, 16(3): 283-288. doi: 10.1080/15389588.2014.936010
|
[67] |
EREN E, AVSAR E, YILDIRIM Z B, et al. Investigation of urban bicycle roads in terms of bicycle compatibility[C]//ENAR. 2nd International Congress on Engineering and Architecture. Wakefield: ENAR, 2019: 918-926.
|
[68] |
ABDULLAH Y A, AHMAD RAZI S A, NASRUDIN N, et al. Assessing cycle lanes using the bicycle compatibility index (BCI) in ShahAlam, Selangor, Malaysia[J]. Planning Malaysia, 2020, 18(4): 128-143.
|
[69] |
TIEDEMAN K A. Do complete streets offer cyclists high levels of service? Applying David Harkey's bicycle compatibility index to Seattle and Copenhagen's complete street networks[D]. Washington DC: University of Washington, 2021.
|
[70] |
戴冀峰, 赵贤兰, 林建新, 等. 城市自行车路段服务水平研究[J]. 长安大学学报(自然科学版), 2015, 35(增): 26-31.
DAI Ji-feng, ZHAO Xian-lan, LIN Jian-xin, et al. Study on the level of service for urban bicycle road segment[J]. Journal of Chang'an University (Natural Sciences), 2015, 35(S): 26-31. (in Chinese)
|
[71] |
CHEN C. Crowdsourcing data-driven development of bicycle safety performance functions (SPFs): microscopic and macroscopic scales[D]. Corvallis: Oregon State University, 2017.
|
[72] |
LI Y, ZHOU W H, NAN S R, et al. Redesign of the cross-section of bicycle lanes considering electric bicycles[J]. Proceedings of the Institution of Civil Engineers—Transport, 2017, 170(5): 255-266. doi: 10.1680/jtran.16.00175
|
[73] |
李岩, 南斯睿, 胡文斌, 等. 机非标线分隔道路电动自行车越线风险模型[J]. 重庆交通大学学报(自然科学版), 2021, 40(2): 13-20. doi: 10.3969/j.issn.1674-0696.2021.02.03
LI Yan, NAN Si-rui, HU Wen-bin, et al. Lane transgressing risk model of electric bicycle on marking separation road section[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2021, 40(2): 13-20. (in Chinese) doi: 10.3969/j.issn.1674-0696.2021.02.03
|
[74] |
陈小鸿, 岳李圣飒, 杨奎. 混行非机动车道被超车自行车骑行安全评价[J]. 同济大学学报(自然科学版), 2017, 45(2): 215-222.
CHEN Xiao-hong, YUE Li-sheng-sa, YANG Kui. Safety evaluation of overtaken bicycle on a shared bicycle path[J]. Journal of Tongji University (Natural Science), 2017, 45(2): 215-222. (in Chinese)
|
[75] |
NORDBACK K L, MARSHALL W E. Improving bicycle safety with more bikers: an intersection-level study[C]//ASCE. Proceedings of the Green Streets and Highways 2010 Conference. Reston: ASCE, 2010: 135-146.
|
[76] |
NAZEMI M, VAN EGGERMOND M A B, ERATH A, et al. Studying bicyclists' perceived level of safety using a bicycle simulator combined with immersive virtual reality[J]. Accident Analysis and Prevention, 2021, 151: 105943. doi: 10.1016/j.aap.2020.105943
|
[77] |
BLANC B, FIGLIOZZI M. Modeling the impacts of facility type, trip characteristics, and trip stressors on cyclists' comfort levels utilizing crowdsourced data[J]. Transportation Research Record, 2016, 2587(1): 100-108. doi: 10.3141/2587-12
|
[78] |
SCOTT M J C, HURNALL DD, PATTINSON W H. The Geelong bikeplan: practical planning for cyclists real needs[C]//The National Academies of Sciences. Australian Transport Research Forum, Fourth Annual Meeting. Washington DC: The National Academies of Sciences, 1978: 439-473.
|
[79] |
SORTON A, WALSH T. Bicycle stress level as a tool to evaluate urban and suburban bicycle compatibility[J]. Transportation Research Record, 1994(1438): 17-24.
|
[80] |
MEKURIA M C, FURTH P G, NIXON H. Low-stress bicycling and network connectivity[R]. San Jose: Mineta Transportation Institute Publications, 2012.
|
[81] |
WANG H Z, PALM M, CHEN C, et al. Does bicycle network level of traffic stress (LTS) explain bicycle travel behavior? Mixed results from an Oregon case study[J]. Journal of Transport Geography, 2016, 57: 8-18. doi: 10.1016/j.jtrangeo.2016.08.016
|
[82] |
BOETTGE B, HALL D M, CRAWFORD T. Assessing the bicycle network in St. Louis: a place-based user-centered approach[J]. Sustainability, 2017, 9(2): 241. doi: 10.3390/su9020241
|
[83] |
MORAN S K, TSAY W, LAWRENCE S, et al. Lowering bicycle stress one link at a time: where should we invest in infrastructure?[J]. Transportation Research Record, 2018, 2672(36): 33-41. doi: 10.1177/0361198118783109
|
[84] |
RODRIGUES M R, RODRIGUES DA SILVA A N, TEIXEIRA I P. Assessing the applicability of the cyclists' level of traffic stress (LTS) classification to a medium-sized city in a developing country[J]. Journal of Transport and Health, 2022, 24: 101321. doi: 10.1016/j.jth.2021.101321
|
[85] |
LIM T, THOMPSON J, TIAN L M, et al. A transactional model of stress and coping applied to cyclist subjective experiences[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 96: 155-170. doi: 10.1016/j.trf.2023.05.013
|
[86] |
AVILA-PALENCIA I, DE NAZELLE A, COLE-HUNTER T, et al. The relationship between bicycle commuting and perceived stress: a cross-sectional study[J]. BMJ Open, 2017, 7(6): e013542. doi: 10.1136/bmjopen-2016-013542
|
[87] |
CAVIEDES A, FIGLIOZZI M. Modeling the impact of traffic conditions and bicycle facilities on cyclists' on-road stress levels[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2018, 58: 488-499. doi: 10.1016/j.trf.2018.06.032
|
[88] |
SHAFER C S, LEE B, TURNER S, et al. Evaluation of bicycle and pedestrian facilities: user satisfaction and perceptions on three shared use trails in Texas[R]. College Station: Texas Transportation Institute, 1999.
|
[89] |
PAIGE WILLIS D, MANAUGH K, EL-GENEIDY A. Uniquely satisfied: exploring cyclist satisfaction[J]. Transportation Research Part F: Traffic Psychology andBehaviour, 2013, 18: 136-147. doi: 10.1016/j.trf.2012.12.004
|
[90] |
钱佳, 汪德根, 牛玉. 城市居民使用市内公共自行车的满意度影响因素分析——以苏州市为例[J]. 地理研究, 2014, 33(2): 358-371.
QIAN Jia, WANG De-gen, NIU Yu. Analysis of the influencing factors of urban residents to use urban public bikes: a case study of Suzhou[J]. Geographical Research, 2014, 33(2): 358-371. (in Chinese)
|
[91] |
朱彤, 杨晨煊, 郭春琳, 等. 城市道路环境自行车出行者满意度模型研究[J]. 重庆交通大学学报(自然科学版), 2018, 37(2): 102-106. doi: 10.3969/j.issn.1674-0696.2018.02.16
ZHU Tong, YANG Chen-xuan, GUO Chun-lin, et al. Satisfaction model of cyclists in urban road environment[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2018, 37(2): 102-106. (in Chinese) doi: 10.3969/j.issn.1674-0696.2018.02.16
|
[92] |
MAIOLI H C, DE CARVALHO R C, DE MEDEIROS D D. SERVBIKE: riding customer satisfaction of bicycle sharing service[J]. Sustainable Cities and Society, 2019, 50: 101680. doi: 10.1016/j.scs.2019.101680
|
[93] |
ZHU Xin. Satisfaction and usage evaluation of city shared bicycle[J]. International Journal of Social Science and Education Research, 2020, 3(9): 227-235.
|
[94] |
徐俊, 徐敏, 张丽硕, 等. 自行车骑行者满意度模型构建及活化研究[J]. 现代城市研究, 2021, 36(5): 77-82. doi: 10.3969/j.issn.1009-6000.2021.05.012
XU Jun, XU Min, ZHANG Li-shuo, et al. Research on construction and activation of cyclist satisfaction model[J]. Modern Urban Research, 2021, 36(5): 77-82. (in Chinese) doi: 10.3969/j.issn.1009-6000.2021.05.012
|
[95] |
MOURATIDIS K, DE VOS J, YIANNAKOU A, et al. Sustainable transport modes, travel satisfaction, and emotions: evidence from car-dependent compact cities[J]. Travel Behaviour and Society, 2023, 33: 100613. doi: 10.1016/j.tbs.2023.100613
|
[96] |
BERGSTRÖM A, MAGNUSSON R. Potential of transferring car trips to bicycle during winter[J]. Transportation Research Part A: Policy and Practice, 2003, 37(8): 649-666. doi: 10.1016/S0965-8564(03)00012-0
|
[97] |
BRESSEL E, LARSON B J. Bicycle seat designs and their effect on pelvic angle, trunk angle, and comfort[J]. Medicine and Science in Sports and Exercise, 2003, 35(2): 327-332. doi: 10.1249/01.MSS.0000048830.22964.7c
|
[98] |
YOSHIDA J, KAWAGOE N, KAWAMURA T. Improvement of bicycle riding comfort by reduction of seat vibration[J]. Journal of System Design and Dynamics, 2013, 7(3): 293-303. doi: 10.1299/jsdd.7.293
|
[99] |
LIU Y S, TSAY T S, CHEN C P, et al. Simulation of riding a full suspension bicycle for analyzing comfort and pedaling force[J]. Procedia Engineering, 2013, 60: 84-90. doi: 10.1016/j.proeng.2013.07.061
|
[100] |
LI Z B, WANG W, ZHANG Y Y, et al. Exploring factors influencing bicyclists' perception of comfort on bicycle facilities[C]//TRB. TRB 2012 Annual Meeting. Washington DC: TRB, 2012: 718-727.
|
[101] |
AYACHI F S, DOREY J, GUASTAVINO C. Identifying factors of bicycle comfort: an online survey with enthusiast cyclists[J]. Applied Ergonomics, 2015, 46: 124-136. doi: 10.1016/j.apergo.2014.07.010
|
[102] |
APASNORE P, ISMAIL K, KASSIM A. Bicycle-vehicle interactions at mid-sections of mixed traffic streets: examining passing distance and bicycle comfort perception[J]. Accident Analysis and Prevention, 2017, 106: 141-148. doi: 10.1016/j.aap.2017.05.003
|
[103] |
ZHU S Y, ZHU F. Cycling comfort evaluation with instrumented probe bicycle[J]. Transportation Research Part A: Policy and Practice, 2019, 129: 217-231. doi: 10.1016/j.tra.2019.08.009
|
[104] |
BEURA S K, CHELLAPILLA H, PANDA M, et al. Bicycle comfort level rating (BCLR) model for urban street segments in mid-sized cities of India[J]. Journal of Transport and Health, 2021, 20: 100971. doi: 10.1016/j.jth.2020.100971
|
[105] |
YAMAGUCHI R, MEHMOOD F, YOSHIHISA T, et al. A bicycle navigation system for analyzing the comfort level of the cyclist[C]//ACM. 29th International Conference on Intelligent User Interfaces. New York: ACM, 2024: 37-40.
|
[106] |
HÖLZEL C, HÖCHTL F, SENNER V. Cycling comfort on different road surfaces[J]. Procedia Engineering, 2012, 34: 479-484. doi: 10.1016/j.proeng.2012.04.082
|
[107] |
THIGPEN C G, LI H, HANDY S L, et al. Modeling the impact of pavement roughness on bicycle ride quality[J]. Transportation Research Record, 2015, 2520(1): 67-77. doi: 10.3141/2520-09
|
[108] |
MIAH S, KAPARIAS I, AYUB N, et al. Measuring cycle riding comfort in Southampton using an instrumented bicycle[C]//IEEE. 6th International Conference on Models and Technologies for Intelligent Transportation Systems. New York: IEEE, 2019: 8883328.
|
[109] |
QIAN X D, MOORE J K, NIEMEIER D. Predicting bicycle pavement ride quality: sensor-based statistical model[J]. Journal of Infrastructure Systems, 2020, 26(3): 04020033. doi: 10.1061/(ASCE)IS.1943-555X.0000571
|
[110] |
WAGE O, FEUERHAKE U, KOETSIER C, et al. Ride vibrations: towards comfort-based bicycle navigation[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, 43(B4): 367-373.
|
[111] |
ABBISS C R, LAURSEN P B. Models to explain fatigue during prolonged endurance cycling[J]. Sports Medicine, 2005, 35(10): 865-898. doi: 10.2165/00007256-200535100-00004
|
[112] |
PIRES F O, SILVA-JÚNIOR F L, BRIETZKE C, et al. Mental fatigue alters cortical activation and psychological responses, impairing performance in a distance-based cycling trial[J]. Frontiers in Physiology, 2018, 9: 227. doi: 10.3389/fphys.2018.00227
|
[113] |
LUCIA A, SAN JUAN A F, MONTILLA M, et al. In professional road cyclists, low pedaling cadences are less efficient[J]. Medicine and Science in Sports and Exercise, 2004, 36(6): 1048-1054. doi: 10.1249/01.MSS.0000128249.10305.8A
|
[114] |
ABBISS C R, BURNETT A, NOSAKA K, et al. Effect of hot versus cold climates on power output, muscle activation, and perceived fatigue during a dynamic 100-km cycling trial[J]. Journal of Sports Sciences, 2010, 28(2): 117-125. doi: 10.1080/02640410903406216
|
[115] |
PRIEGO QUESADA J I, PÉREZ-SORIANO P, LUCAS-CUEVAS A G, et al. Effect of bike-fit in the perception of comfort, fatigue and pain[J]. Journal of Sports Sciences, 2017, 35(14): 1459-1465. doi: 10.1080/02640414.2016.1215496
|
[116] |
SALAM H, MARCORA S M, HOPKER J G. The effect of mental fatigue on critical power during cycling exercise[J]. European Journal of Applied Physiology, 2018, 118(1): 85-92. doi: 10.1007/s00421-017-3747-1
|
[117] |
ZEUWTS L H R H, ILIANO E, SMITH M, et al. Mental fatigue delays visual searchbehaviour in young cyclists when negotiating complex traffic situations: a study in virtual reality[J]. Accident Analysis and Prevention, 2021, 161: 106387. doi: 10.1016/j.aap.2021.106387
|
[118] |
薛嘉良. 城市自行车交通出行者生理心理特性及环境质量感知机理研究[D]. 西安: 西安建筑科技大学, 2018.
XUE Jia-liang. Study on physiological and psychological characteristics and environmental quality perception mechanism of urban bicycle traffic travelers[D]. Xi'an: Xi'an University of Architecture and Technology, 2018. (in Chinese)
|
[119] |
李聪颖, 杨云峰, 邵壮壮, 等. 城市自行车骑行者疲劳感知特性[J]. 中国公路学报, 2018, 31(6): 291-298. doi: 10.3969/j.issn.1001-7372.2018.06.016
LI Cong-ying, YANG Yun-feng, SHAO Zhuang-zhuang, et al. Characteristics of urban cyclist perception of fatigue[J]. China Journal of Highway and Transport, 2018, 31(6): 291-298. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.06.016
|
[120] |
李聪颖, 邵壮壮, 封少帅, 等. 自行车骑行者生理、心理与综合负荷感知模型[J]. 交通运输工程学报, 2020, 20(1): 181-191. doi: 10.19818/j.cnki.1671-1637.2020.01.015
LI Cong-ying, SHAO Zhuang-zhuang, FENG Shao-shuai, et al. Physiology, psychology and comprehensive loading perception models of cyclists[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 181-191. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.015
|
[121] |
CREWE H, TUCKER R, NOAKES T D. The rate of increase in rating of perceived exertion predicts the duration of exercise to fatigue at a fixed power output in different environmental conditions[J]. European Journal of Applied Physiology, 2008, 103(5): 569-577. doi: 10.1007/s00421-008-0741-7
|
[122] |
KAZEMZADEH K, BANSAL P. Electric bike level of service: a review and research agenda[J]. Sustainable Cities and Society, 2021, 75: 103413. doi: 10.1016/j.scs.2021.103413
|
[123] |
DILL J, MOHR C, MA L. How can psychological theory help cities increase walking and bicycling?[J]. Journal of the American Planning Association, 2014, 80(1): 36-51. doi: 10.1080/01944363.2014.934651
|
[124] |
张红. 基于复杂网络理论的公共自行车租赁点布局研究[D]. 济南: 山东建筑大学, 2018.
ZHANG Hong. Characteristic analysis of urban public bicycle station based on complex network theory[D]. Jinan: Shandong Jianzhu University, 2018. (in Chinese)
|
[125] |
WEI S, XU J G, MA H T. Exploring public bicycle network structure based on complex network theory and shortest path analysis: the public bicycle system in Yixing, China[J]. Transportation Planning and Technology, 2019, 42(3): 293-307. doi: 10.1080/03081060.2019.1576385
|
[126] |
SABERI M, GHAMAMI M, GU Y, et al. Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: a case of Tube strike in London[J]. Journal of Transport Geography, 2018, 66: 154-166. doi: 10.1016/j.jtrangeo.2017.11.018
|
[127] |
GAO Z, WEI S, WANG L, et al. Exploring the spatial-temporal characteristics of traditional public bicycle use in Yancheng, China: a perspective of time series cluster of stations[J]. Sustainability, 2020, 12(16): 6370. doi: 10.3390/su12166370
|
[128] |
YIN Q Q, WANG Y Q, LIU J M. Importance node analysis of shared bicycle network based on degree and clustering coefficient[C]//ASCE. Proceedings of the 21st COTA International Conference of Transportation Professionals. Reston: ASCE, 2021: 1943-1949.
|
[129] |
MENG F Y, ZHENG L L, DING T Q, et al. Understanding dockless bike-sharing spatiotemporal travel patterns: evidence from ten cities in China[J]. Computers, Environment and Urban Systems, 2023, 104: 102006. doi: 10.1016/j.compenvurbsys.2023.102006
|
[130] |
HILLIER B. Spatial sustainability in cities: organic patterns and sustainable forms[C]//KTH. Proceedings of the 7th International Space Syntax Symposium. Royal Institute of Technology. Stockholm: KTH, 2009: K01.
|
[131] |
LIU Z C, SONG Z Q, CHEN A, et al. Exploring bicycle route choice behavior with space syntax analysis[R]. Kalamazoo: Western Michigan University, 2016.
|
[132] |
DAI X L, YU W B. Configurational exploration of pedestrian and cyclist movements: a case study of Hangzhou, China[J]. Journal of the Faculty of Architecture, 2014, 11(2): 119-130.
|
[133] |
RAFORD N, CHIARADIA A, GIL J. Space syntax: the role of urban form in cyclist route choice in central London[C]//TRB. TRB 2007 Annual Meeting. Washington DC: TRB, 2007: 1-18.
|
[134] |
LAW S, SAKR F L, MARTINEZ M. Measuring the changes in aggregate cycling patterns between 2003 and 2012 from a space syntax perspective[J]. Behavioral Sciences, 2014, 4(3): 278-300. doi: 10.3390/bs4030278
|
[135] |
COOPER C H V. Using spatial network analysis to model pedal cycle flows, risk and mode choice[J]. Journal of Transport Geography, 2017, 58: 157-165. doi: 10.1016/j.jtrangeo.2016.12.003
|
[136] |
ORELLANA D, GUERRERO M L. Exploring the influence of road network structure on the spatialbehaviour of cyclists using crowdsourced data[J]. Environment and Planning B: Urban Analytics and City Science, 2019, 46(7): 1314-1330. doi: 10.1177/2399808319863810
|
[137] |
FERNANDES D, URBANO M R, KANASHIRO M. Routing for safer rides: a space syntax approach to predict bicycle collisions in a Brazilian city[J]. Urbe. Revista Brasileira de Gestão Urbana, 2021, 13: e20200106. doi: 10.1590/2175-3369.013.e20200106
|
[138] |
KARCZEWSKI A M. Examining the effects of urban form factors, high-integrated streets, and topological choice on bicycle usage in rotterdam[D]. Groningen: University of Groningen, 2021.
|
[139] |
WANG L, ZHOU K C, ZHANG S R, et al. Designing bike-friendly cities: interactive effects of built environment factors on bike-sharing[J]. Transportation Research Part D: Transport and Environment, 2023, 117: 103670. doi: 10.1016/j.trd.2023.103670
|
[140] |
ZHENG J, BAI X F, WU Z R, et al. Research on the spatial behavior conflict in suburban village communities based on GPS tracking and cognitive mapping[J]. Journal of Asian Architecture and Building Engineering, 2022, 21(6): 2605-2620. doi: 10.1080/13467581.2021.1971680
|
[141] |
LERMAN Y, ROFÈ Y, OMER I. Using space syntax to model pedestrian movement in urban transportation planning[J]. Geographical Analysis, 2014, 46(4): 392-410. doi: 10.1111/gean.12063
|
[142] |
LUNDBERG B, WEBER J. Non-motorized transport and university populations: an analysis of connectivity and network perceptions[J]. Journal of Transport Geography, 2014, 39: 165-178. doi: 10.1016/j.jtrangeo.2014.07.002
|
[143] |
BOISJOLY G, LACHAPELLE U, EL-GENEIDY A. Bicycle network performance: assessing the directness of bicycle facilities through connectivity measures, a Montreal, Canada case study[J]. International Journal of Sustainable Transportation, 2020, 14(8): 620-634. doi: 10.1080/15568318.2019.1595791
|
[144] |
SEMLER C, SANDERS M, BUCK D, et al. The keys to connectivity: the district ofcolumbia's innovative approach to unlocking low-stress bicycle networks[J]. Transportation Research Record, 2018, 2672(36): 63-72. doi: 10.1177/0361198118798445
|
[145] |
陈洁, 陆锋, 程昌秀. 可达性度量方法及应用研究进展评述[J]. 地理科学进展, 2007, 26(5): 100-110. doi: 10.3969/j.issn.1007-6301.2007.05.011
CHEN Jie, LU Feng, CHENG Chang-xiu. Advance in accessibility evaluation approaches and applications[J]. Progress in Geography, 2007, 26(5): 100-110. (in Chinese) doi: 10.3969/j.issn.1007-6301.2007.05.011
|
[146] |
HANSEN W G. How accessibility shapes land use[J]. Journal of the American Institute of Planners, 1959, 25(2): 73-76. doi: 10.1080/01944365908978307
|
[147] |
WACHS M, KUMAGAI T G. Physical accessibility as a social indicator[J]. Socio-Economic Planning Sciences, 1973, 7(5): 437-456. doi: 10.1016/0038-0121(73)90041-4
|
[148] |
CERVERO R. Paradigm shift: from automobility to accessibility planning[J]. Urban Futures (Canberra), 1997(22): 9-20.
|
[149] |
IACONO M, KRIZEK K J, EL-GENEIDY A. Measuring non-motorized accessibility: issues, alternatives, and execution[J]. Journal of Transport Geography, 2010, 18(1): 133-140. doi: 10.1016/j.jtrangeo.2009.02.002
|
[150] |
CASE R B. Accessibility-based factors of travel odds: performance measures for coordination of transportation and land use to improve nondriver accessibility[J]. Transportation Research Record, 2011, 2242(1): 106-113. doi: 10.3141/2242-13
|
[151] |
CHANDRA S, JIMENEZ J, RADHAKRISHNAN R. Accessibility evaluations for nighttime walking and bicycling for low-income shift workers[J]. Journal of Transport Geography, 2017, 64: 97-108. doi: 10.1016/j.jtrangeo.2017.08.010
|
[152] |
WU X Y, LU Y, LIN Y Y, et al. Measuring the destination accessibility of cycling transfer trips in metro station areas: a big data approach[J]. International Journal of Environmental Research and Public Health, 2019, 16(15): 2641. doi: 10.3390/ijerph16152641
|
[153] |
MURPHY B, OWEN A. Implementing low-stress bicycle routing in national accessibility evaluation[J]. Transportation Research Record, 2019, 2673(5): 240-249. doi: 10.1177/0361198119837179
|
[154] |
王茜莹. 基于出行者生理心理感知的城市自行车交通可达性研究[D]. 西安: 西安建筑科技大学, 2019.
WANG Qian-ying. Study on urban bicycle traffic accessibility based on travelers' physiological and psychological perception[D]. Xi'an: Xi'an University of Architecture and Technology, 2019. (in Chinese)
|
[155] |
LI A Y, HUANG Y Z, AXHAUSEN K W. An approach to imputing destination activities for inclusion in measures of bicycle accessibility[J]. Journal of Transport Geography, 2020, 82: 102566. doi: 10.1016/j.jtrangeo.2019.102566
|
[156] |
STANDEN C, CRANE M, GREAVES S, et al. How equitable are the distributions of the physical activity and accessibility benefits of bicycle infrastructure?[J]. International Journal for Equity in Health, 2021, 20(1): 208. doi: 10.1186/s12939-021-01543-x
|
[157] |
RYAN J, PEREIRA R H M. What are we missing when we measure accessibility? Comparing calculated and self-reported accounts among older people[J]. Journal of Transport Geography, 2021, 93: 103086. doi: 10.1016/j.jtrangeo.2021.103086
|
[158] |
WANG J Y, KWAN M P, CAO W P, et al. Assessing changes in job accessibility and commuting time under bike-sharing scenarios[J]. Transportmetrica A: Transport Science, 2024, 20(1): 2043950. doi: 10.1080/23249935.2022.2043950
|
[159] |
Pedestrian and Bicycle Information Center. Bikeability checklist: how bikeable is your community?[R]. Washington DC: U.S. Department of Transportation, 2002.
|
[160] |
KRENN P J, OJA P, TITZE S. Development of abikeability index to assess the bicycle-friendliness of urban environments[J]. Open Journal of Civil Engineering, 2015, 5(4): 451-459. doi: 10.4236/ojce.2015.54045
|
[161] |
ARELLANA J, SALTARÍN M, LARRAÑAGA A M, et al. Developing an urbanbikeability index for different types of cyclists as a tool to prioritise bicycle infrastructure investments[J]. Transportation Research Part A: Policy and Practice, 2020, 139: 310-334. doi: 10.1016/j.tra.2020.07.010
|
[162] |
SCHMID-QUERG J, KELER A, GRIGOROPOULOS G. The Munich bikeability index: a practical approach for measuring urban bikeability[J]. Sustainability, 2021, 13(1): 428. doi: 10.3390/su13010428
|
[163] |
MCNEIL N. Bikeability and the 20-min neighborhood: how infrastructure and destinations influence bicycle accessibility[J]. Transportation Research Record, 2011, 2247(1): 53-63. doi: 10.3141/2247-07
|
[164] |
LOWRY M, CALLISTER D, GRESHAM M, et al. Using bicycle level of service to assess community-wide bikeability[C]//TRB. TRB 2012 Annual Meeting. Washington DC: TRB, 2012: 1-15.
|
[165] |
WINTERS M, BRAUER M, SETTON E M, et al. Mapping bikeability: a spatial tool to support sustainable travel[J]. Environment and Planning B: Planning and Design, 2013, 40(5): 865-883. doi: 10.1068/b38185
|
[166] |
TRAN P T M, ZHAO M S, YAMAMOTO K, et al. Cyclists' personal exposure to traffic-related air pollution and its influence on bikeability[J]. Transportation Research Part D: Transport and Environment, 2020, 88: 102563. doi: 10.1016/j.trd.2020.102563
|
[167] |
WYSLING L, PURVES R S. Where to improve cycling infrastructure? Assessing bicycle suitability andbikeability with open data in the city of Paris[J]. Transportation Research Interdisciplinary Perspectives, 2022, 15: 100648. doi: 10.1016/j.trip.2022.100648
|
[168] |
FOSGERAU M, ŁUKAWSKA M, PAULSEN M, et al. Bikeability and the induced demand for cycling[J]. Proceedings of the National Academy of Sciences, 2023, 120(16): e2220515120. doi: 10.1073/pnas.2220515120
|
[169] |
GREEN O, IVAN J N, FILIPOVSKA M, et al. Using logistic regression to evaluate pedestrian-vehicle interaction severity at side street green and exclusive phase signals[J]. Transportation Research Record, 2023, 2677(9): 438-449. doi: 10.1177/03611981231159120
|
[170] |
BIAN Y, LI L, ZHANG H, et al. Categorizing bicycling environment quality based on mobile sensor data and bicycle flow data[J]. Sustainability, 2021, 13(8): 4085. doi: 10.3390/su13084085
|
[171] |
BAI Y W, BAI Y H, WANG R Y, et al. Exploring associations between the built environment and cycling behaviour around urban greenways from a human-scale perspective[J]. Land, 2023, 12(3): 619. doi: 10.3390/land12030619
|