Citation: | FENG Zhong-ju, XU Bo-xi, DONG Jian-song, ZHANG Cong, LIU Xu-zhao, LAI De-jin. Seismic performance of large-diameter and variable cross-section pile group foundation in earthquake-induced subsidence sites[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 80-91. doi: 10.19818/j.cnki.1671-1637.2024.06.005 |
[1] |
DONG Yun-xiu, FENG Zhong-ju, HE Jing-bin, et al. Seismic response of a bridge pile foundation during a shaking table test[J]. Shock and Vibration, 2019, DOI: 10.1155/2019/9726013.
|
[2] |
FENG Zhong-ju, HU Hai-bo, ZHAO Rui-xin, et al. Experiments on reducing negative skin friction of piles[J]. Advances in Civil Engineering, 2019, 2019: 4201842. doi: 10.1155/2019/4201842
|
[3] |
FENG Zhong-ju, HUO Jian-wei, HU Hai-bo, et al. Research on corrosion damage and bearing characteristics of bridge pile foundation concrete under a dry-wet-freeze-thaw cycle[J]. Advances in Civil Engineering, 2021, 2021: 8884396. doi: 10.1155/2021/8884396
|
[4] |
CHEN Hui-yun, FENG Zhong-ju, LI Tie, et al. Study on the vertical bearing performance of pile across cave and sensitivity of three parameters[J]. Scientific Reports, 2021, 11: 17342. doi: 10.1038/s41598-021-96883-7
|
[5] |
KHALIL M M, HASSAN A M, ELMAMLOUK H H. Dynamic behavior of pile foundations under vertical and lateral vibrations[J]. HBRC Journal, 2019, 15(1): 55-71. doi: 10.1080/16874048.2019.1676022
|
[6] |
陈思晓, 冯忠居, 何静斌. 海洋环境基桩海水泥浆工程特性试验研究[J]. 桥梁建设, 2018, 48(6): 70-74. doi: 10.3969/j.issn.1003-4722.2018.06.013
CHEN Si-xiao, FENG Zhong-ju, HE Jing-bin. Experimental study on engineering characteristics of seawater mortar for bored piles in marine environment[J]. Bridge Construction, 2018, 48(6): 70-74. (in Chinese) doi: 10.3969/j.issn.1003-4722.2018.06.013
|
[7] |
冯忠居, 陈露, 蔡杰, 等. 大直径变截面桩与等截面桩的横向承载特性对比研究[J]. 公路, 2022, 67(9): 189-195.
FENG Zhong-ju, CHEN Lu, CAI Jie, et al. Difference of lateral bearing characteristics between large diameter variable cross-section pile and constant cross-section pile[J]. Highway, 2022, 67(9): 189-195. (in Chinese)
|
[8] |
冯忠居, 王逸然, 张俊波, 等. 地震作用下液化场地变截面桩与等截面桩的动力响应对比分析[J]. 世界地震工程, 2022, 38(3): 59-69.
FENG Zhong-ju, WANG Yi-ran, ZHANG Jun-bo, et al. Comparative analysis of dynamic response between variable section pile and constant section pile in liquefaction site under earthquake action[J]. World Earthquake Engineering, 2022, 38(3): 59-69. (in Chinese)
|
[9] |
滕延京, 王卫东, 康景文, 等. 基础工程技术的新进展[J]. 土木工程学报, 2016, 49(4): 1-21.
TENG Yan-jing, WANG Wei-dong, KANG Jing-wen, et al. The new development of the technology of building foundation engineering[J]. China Civil Engineering Journal, 2016, 49(4): 1-21. (in Chinese)
|
[10] |
冯忠居, 李玉婷, 蔡杰, 等. 地震作用软土震陷特性及变截面群桩动力响应[J]. 湖南大学学报(自然科学版), 2023, 50(9): 109-118.
FENG Zhong-ju, LI Yu-ting, CAI Jie, et al. Seismic subsidence characteristics of soft soil and dynamic response of pile group with variable cross section[J]. Journal of Hunan University (Natural Sciences), 2023, 50(9): 109-118. (in Chinese)
|
[11] |
张聪, 冯忠居, 孟莹莹, 等. 单桩与群桩基础动力时程响应差异振动台试验[J]. 岩土力学, 2022, 43(5): 1326-1334.
ZHANG Cong, FENG Zhong-ju, MENG Ying-ying, et al. Shaking table test on the difference of dynamic time-history response between single pile and pile group foundation[J]. Rock and Soil Mechanics, 2022, 43(5): 1326-1334. (in Chinese)
|
[12] |
汪刚, 景立平, 李嘉瑞, 等. 桩-土-上部结构动力相互作用振动台试验研究[J]. 岩石力学与工程学报, 2021, 40(增2): 3414-3424.
WANG Gang, JING Li-ping, LI Jia-rui, et al. Shaking table test study on seismic-soil-pile-superstructure-interaction[J]. Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3414-3424. (in Chinese)
|
[13] |
HAMAYOON K, MORIKAWA Y, OKA R, et al. 3D dynamic finite element analyses and 1g shaking table tests on seismic performance of existing group-pile foundation in partially improved grounds under dry condition[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 196-210. doi: 10.1016/j.soildyn.2016.08.032
|
[14] |
黄雨, 叶为民, 唐益群, 等. 桩基震陷的有效应力动力计算方法[J]. 工程力学, 2001, 18(4): 123-129. doi: 10.3969/j.issn.1000-4750.2001.04.018
HUANG Yu, YE Wei-min, TANG Yi-qun, et al. Dynamic analysis of effective stress for seismic subsidence of pile foundations[J]. Engineering Mechanics, 2001, 18(4): 123-129. (in Chinese) doi: 10.3969/j.issn.1000-4750.2001.04.018
|
[15] |
李平, 田兆阳, 肖瑞杰, 等. 基于三轴试验的软土震陷简化计算方法研究[J]. 震灾防御技术, 2017, 12(1): 145-156.
LI Ping, TIAN Zhao-yang, XIAO Rui-jie, et al. Study of simplified calculation method for seismic settlement of soft soil based on triaxial test[J]. Technology for Earthquake Disaster Prevention, 2017, 12(1): 145-156. (in Chinese)
|
[16] |
杨石红, 刘静蓉, 刘金珠, 等. 软弱地基土层震陷简化计算方法研究[J]. 世界地震工程, 1997, 13(2): 53-61.
YANG Shi-hong, LIU Jing-rong, LIU Jin-zhu, et al. Study of simplified method calculating the seismic settlement of foundation on soft soil[J]. World Earthquake Engineering, 1997, 13(2): 53-61. (in Chinese)
|
[17] |
陈青生, 熊浩, 高广运. 基于R-N非线性疲劳损伤累积模型的砂土震陷计算方法[J]. 岩土工程学报, 2013, 35(12): 2203-2211.
CHEN Qing-sheng, XIONG Hao, GAO Guang-yun. Procedure for evaluating seismic compression in sands based on R-N cumulative damage fatigue nonlinear model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2203-2211. (in Chinese)
|
[18] |
GHAYOOMI M, KHOSRAVI A, MCCARTNEY J S, et al. Challenges in prediction earthquake-induced settlements of partially saturated sands[C]//ASCE. GeoFlorida 2010: Advances in Analysis, Modeling and Design. Reston: ASCE, 2010: 3052-3061.
|
[19] |
程学磊, 崔春义, 孙宗光. 饱和软土自由场地地震反应特性振动台试验[J]. 地震工程学报, 2019, 41(1): 108-116. doi: 10.3969/j.issn.1000-0844.2019.01.108
CHENG Xue-lei, CUI Chun-yi, SUN Zong-guang. Shaking table tests on the seismic response characteristics of a free field in saturated soft soil[J]. China Earthquake Engineering Journal, 2019, 41(1): 108-116. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.01.108
|
[20] |
刘闯, 冯忠居, 张福强, 等. 地震作用下特大型桥梁嵌岩桩基础动力响应[J]. 交通运输工程学报, 2018, 18(4): 53-62. doi: 10.3969/j.issn.1671-1637.2018.04.006
LIU Chuang, FENG Zhong-ju, ZHANG Fu-qiang, et al. Dynamic response of rock-socketed pile foundation for extra-large bridge under earthquake action[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 53-62. (in Chinese) doi: 10.3969/j.issn.1671-1637.2018.04.006
|
[21] |
FENG Zhong-ju, HU Hai-bo, DONG Yun-xiu, et al. Effect of steel casing on vertical bearing characteristics of steel tube-reinforced concrete piles in loess area[J]. Applied Sciences, 2019, 9(14): 9142874.
|
[22] |
冯忠居, 张聪, 何静斌, 等. 强震作用下嵌岩单桩时程响应振动台试验[J]. 岩土力学, 2021, 42(12): 3227-3237.
FENG Zhong-ju, ZHANG Cong, HE Jing-bin, et al. Shaking table test of time-history response of rock-socketed single pile under strong earthquake[J]. Rock and Soil Mechanics, 2021, 42(12): 3227-3237. (in Chinese)
|
[23] |
ZHANG Cong, FENG Zhong-ju, GUAN Yun-hui, et al. Study on liquefaction resistance of pile group by shaking table test[J]. Advances in Civil Engineering, 2022, DOI: 10.1155/2022/5074513.
|
[24] |
田兆阳, 李平, 朱胜, 等. 强震作用下软土场地桩基负摩阻力振动台试验研究[J]. 岩土工程学报, 2022, 44(3): 550-559.
TIAN Zhao-yang, LI Ping, ZHU Sheng, et al. Shaking table tests on negative friction of piles in soft soils under strong earthquake motion[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 550-559. (in Chinese)
|
[25] |
邓志华, 曾磊, 林聪煜, 等. 层状地基中桥梁柱墩基础地震响应振动台试验研究[J]. 桥梁建设, 2022, 52(6): 50-57. doi: 10.3969/j.issn.1003-4722.2022.06.007
DENG Zhi-hua, ZENG Lei, LIN Cong-yu, et al. Shaking table test for evaluating seismic response characteristics of columned bridge foundation in layered stratum[J]. Bridge Construction, 2022, 52(6): 50-57. (in Chinese) doi: 10.3969/j.issn.1003-4722.2022.06.007
|
[26] |
辜俊儒, 李平, 田兆阳, 等. 基于OpenSees的地震动对软土震陷影响研究[J]. 地震工程学报, 2019, 41(5): 1339-1346. doi: 10.3969/j.issn.1000-0844.2019.05.1339
GU Jun-ru, LI Ping, TIAN Zhao-yang, et al. Influence of ground motions on seismic subsidence of soft soil based on OpenSees[J]. China Earthquake Engineering Journal, 2019, 41(5): 1339-1346. (in Chinese) doi: 10.3969/j.issn.1000-0844.2019.05.1339
|
[27] |
高广运, 聂春晓, 石超, 等. 多向地震荷载作用下砂土场地震陷分析[J]. 哈尔滨工程大学学报, 2017, 38(7): 1100-1106.
GAO Guang-yun, NIE Chun-xiao, SHI Chao, et al. Seismic subsidence of sand ground subject to multidirectional earthquake load[J]. Journal of Harbin Engineering University, 2017, 38(7): 1100-1106. (in Chinese)
|
[28] |
高广运, 董文悝, 石超, 等. 地震波及砂土特性对震陷的影响分析[C]//中国地质学会工程地质专业委员会. 2016年全国工程地质学术年会论文集. 成都: 中国地质学会工程地质专业委员会, 2016: 110-116.
GAO Guang-yun, DONG Wen-xuan, SHI Chao, et al. Effects of seismic waves and properties of sand on seismic compresion[C]//Engineering Geology Committee of Geological Society of China. 2016 Proceedings of the National Engineering Geology Academic Annual Meeting. Chengdu: Engineering Geology Committee of Geological Society of China, 2016: 110-116. (in Chinese)
|
[29] |
张海丘, 高广运, 王禹. 地震波类型对砂土震陷影响的数值模拟分析[J]. 地震工程学报, 2015, 37(增1): 95-100.
ZHANG Hai-qiu, GAO Guang-yun, WANG Yu. Numerical simulations of the impact of different types of seismic waves on the seismic compression of sands[J]. China Earthquake Engineering Journal, 2015, 37(S1): 95-100. (in Chinese)
|
[30] |
陈青生, 熊浩, 高广运. 地震荷载特征及其对砂土震陷影响试验研究[J]. 岩土工程学报, 2014, 36(8): 1483-1489.
CHEN Qing-sheng, XIONG Hao, GAO Guang-yun. Experimental study on properties of seismic loading and their influence on seismic compression in sands[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1483-1489. (in Chinese)
|
[31] |
路沙沙, 赵东旭, 白举科, 等. 隧道-土-桥桩相互作用体系振动台试验与数值模拟研究[J]. 振动工程学报, 2024, 37(1): 168-181.
LU Sha-sha, ZHAO Dong-xu, BAI Ju-ke, et al. Shaking table test and numerical simulation of tunnel-soil-bridge pile interaction system[J]. Journal of Vibration Engineering, 2024, 37(1): 168-181. (in Chinese)
|
[32] |
李光, 马凤山, 郭捷, 等. 大尺寸工程模型试验中的相似材料配比试验研究[J]. 东北大学学报(自然科学版), 2020, 41(11): 1653-1660. doi: 10.12068/j.issn.1005-3026.2020.11.021
LI Guang, MA Feng-shan, GUO Jie, et al. Experimental study on similar materials ratio used in largescale engineering model test[J]. Journal of Northeastern University (Natural Science), 2020, 41(11): 1653-1660. (in Chinese) doi: 10.12068/j.issn.1005-3026.2020.11.021
|
[33] |
柳春光, 孙国帅, 韩亮, 等. 桥梁水下桩墩结构振动台模型试验相似律验证[J]. 地震工程与工程振动, 2012, 32(4): 13-18.
LIU Chun-guang, SUN Guo-shuai, HAN Liang, et al. Validation of similitude laws for shaking table model test of dynamic interaction of water-pile-pier superstructure[J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(4): 13-18. (in Chinese)
|
[34] |
吕西林, 陈跃庆, 陈波, 等. 结构-地基动力相互作用体系振动台模型试验研究[J]. 地震工程与工程振动, 2000, 20(4): 20-29.
LYU Xi-lin, CHEN Yue-qing, CHEN Bo, et al. Shaking table testing of dynamic soil-structure interaction system[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(4): 20-29. (in Chinese)
|
[35] |
凌贤长, 王东升, 王志强, 等. 液化场地桩-土-桥梁结构动力相互作用大型振动台模型试验研究[J]. 土木工程学报, 2004, 37(11): 67-72.
LING Xian-zhang, WANG Dong-sheng, WANG Zhi-qiang, et al. Large-scale saking table model test of dynamic soil-pile-bridge structure interaction in ground of liquefaction[J]. China Civil Engineering Journal, 2004, 37(11): 67-72. (in Chinese)
|