Volume 24 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
JIANG Shi-xin, ZOU Xiao-xue, YANG Jian-xi, LI Hao, HUANG Xue-mei, LI Ren, ZHANG Ting-ping, LIU Xin-long, WANG Di. Concrete bridge crack detection method based on improved YOLO v8s in complex backgrounds[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 135-147. doi: 10.19818/j.cnki.1671-1637.2024.06.009
Citation: JIANG Shi-xin, ZOU Xiao-xue, YANG Jian-xi, LI Hao, HUANG Xue-mei, LI Ren, ZHANG Ting-ping, LIU Xin-long, WANG Di. Concrete bridge crack detection method based on improved YOLO v8s in complex backgrounds[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 135-147. doi: 10.19818/j.cnki.1671-1637.2024.06.009

Concrete bridge crack detection method based on improved YOLO v8s in complex backgrounds

doi: 10.19818/j.cnki.1671-1637.2024.06.009
Funds:

National Natural Science Foundation of China 62003063

National Natural Science Foundation of China 62103068

Natural Science Foundation of Chongqing CSTB2022NSCQ-MSX1599

Natural Science Foundation of Chongqing cstc2020jcyj-msxmX0047

Science and Technology Research Project of Chongqing Municipal Education Commission KJZD-K202400709

Science and Technology Research Project of Chongqing Municipal Education Commission KJZD-M202300703

Science and Technology Research Project of Chongqing Municipal Education Commission KJQN202100748

More Information
  • Author Bio:

    JIANG Shi-xin(1992-), male, associate professor, PhD, shixinjiang@cqjtu.edu.cn

  • Received Date: 2024-05-11
  • Publish Date: 2024-12-25
  • To address the issue of low detection accuracy for cracks in concrete bridges caused by complex backgrounds, as well as small and obscure features, the crack location information was accurately located, and key parameters such as crack length and width were measured based on the improved YOLO v8s algorithm for concrete bridge crack detection. Based on the YOLO v8s model, the omni-dimensional dynamic convolution (ODConv) was incorporated to capture richer contextual information in feature maps, enhancing the model's ability to extract the target features and detect small and obscure cracks. An improved channel attention module was used to develop the concatenated two-layer feature-modified attention (C2f-MA) fusion module, enabling the extraction of more texture information from feature maps. This modification further made the network focus on crack features, suppressing interferences from irrelevant background information and improving the crack detection performance in complex backgrounds. The weighted intersection over union (WIoU) loss function was introduced to address the challenge of low-quality sample recognition, optimizing the model's convergence speed and detection accuracy. Crack images with complex backgrounds such as small and obscure cracks, shadows, artificial lines, and weeds were screened in the bridge detection report. A bridge crack image dataset was established by manual annotation with complex background conditions. The model's performance was comprehensively evaluated through comparative and ablation experiments by taking recall, average precision and model storage capacity as quantitative evaluation indicators. Research results demonstrate that the improved YOLO v8s algorithm achieves recall, average precision of 0.829, 0.893 and 0.631, respectively, as well as the model storage capacity of 11.14 MB. Its comprehensive evaluation indicators outperforms the baseline YOLO v8s and other target detection models, validating that the proposed algorithm exhibits robust performance in complex backgrounds.

     

  • loading
  • [1]
    陈浩瀚. 混凝土路面图像的裂缝检测算法研究[D]. 东莞: 东莞理工学院, 2023.

    CHEN Hao-han. Research on crack detection algorithm of concrete pavement images[D]. Dongguan: Dongguan University of Technology, 2023. (in Chinese)
    [2]
    邓露, 褚鸿鹄, 龙砺芝, 等. 基于深度学习的土木基础设施裂缝检测综述[J]. 中国公路学报, 2023, 36(2): 1-21. doi: 10.3969/j.issn.1001-7372.2023.02.001

    DENG Lu, CHU Hong-hu, LONG Li-zhi, et al. Review of deep learning-based crack detection for civil infrastructure[J]. China Journal of Highways and Transport, 2023, 36(2): 1-21. (in Chinese) doi: 10.3969/j.issn.1001-7372.2023.02.001
    [3]
    《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002

    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.02.002
    [4]
    HSIEH Y A, TSAI Y J. Machine learning for crack detection: review and model performance comparison[J]. Journal of Computing in Civil Engineering, 2020, 34(5): 04020038. doi: 10.1061/(ASCE)CP.1943-5487.0000918
    [5]
    刘宇飞, 樊健生, 聂建国, 等. 结构表面裂缝数字图像法识别研究综述与前景展望[J]. 土木工程学报, 2021, 54(6): 79-98.

    LIU Yu-fei, FAN Jian-sheng, NIE Jian-guo, et al. Review and prospect of digital-image-based crack detection of structure surface[J]. China Civil Engineering Journal, 2021, 54(6): 79-98. (in Chinese)
    [6]
    MUNAWAR H S, HAMMAD A W A, HADDAD A, et al. Image-based crack detection methods: a review[J]. Infrastructures, 2021, 6(8): 115. doi: 10.3390/infrastructures6080115
    [7]
    LECUN Y L, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [8]
    沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. doi: 10.3969/j.issn.1001-7372.2018.01.001

    SHA Ai-min, TONG Zheng, GAO Jie. Recognition and measurement of pavement diseases based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.01.001
    [9]
    DENG Li, CHU Han-han, SHI Peng, et al. Region-based CNN method with deformable modules for visually classifying concrete cracks[J]. Applied Sciences, 2020, 10(7): 2528. doi: 10.3390/app10072528
    [10]
    晏班夫, 徐观亚, 栾健, 等. 基于Faster R-CNN与形态法的路面病害识别[J]. 中国公路学报, 2021, 34(9): 181-193. doi: 10.3969/j.issn.1001-7372.2021.09.015

    YAN Ban-fu, XU Guan-ya, LUAN Jian, et al. Pavement distress detection based on faster R-CNN and morphological operations[J]. China Journal of Highway and Transport, 2021, 34(9): 181-193. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.09.015
    [11]
    余加勇, 李锋, 薛现凯, 等. 基于无人机及Mask R-CNN的桥梁结构裂缝智能识别[J]. 中国公路学报, 2021, 34(12): 80-90. doi: 10.3969/j.issn.1001-7372.2021.12.007

    YU Jia-yong, LI Feng, XUE Xian-kai, et al. Intelligent identification of bridge structure cracks based on unmanned aerial vehicle and mask R-CNN[J]. China Journal of Highway and Transport, 2021, 34(12): 80-90. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.12.007
    [12]
    REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [13]
    LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multi-box detector[C]//Springer. Proceedings of the 2016 European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [14]
    REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. 2018, DOI: 10.48550/arXiv.804.02767.
    [15]
    彭雨诺, 刘敏, 万智, 等. 基于改进YOLO的双网络桥梁表观病害快速检测算法[J]. 自动化学报, 2022, 48(4): 1018-1032.

    PENG Yu-nuo, LIU Min, WAN Zhi, et al. A dual deep network based on the improved YOLO for fast bridge surface defect detection[J]. Acta Automatica Sinica, 2022, 48(4): 1018-1032. (in Chinese)
    [16]
    HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677. doi: 10.3390/machines11070677
    [17]
    SWATHI Y, CHALLA M. YOLO v8: advancements and innovations in object detection[C]//Springer. International Conference on Smart Computing and Communication. Berlin: Springer, 2024: 1-13.
    [18]
    BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. 2020, DOI: 10.48850/arXiv.2004.10934.
    [19]
    ZHENG Zhao-hui, WANG Ping, REN Dong-wei, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. doi: 10.1109/TCYB.2021.3095305
    [20]
    ZHENG Zhao-hui, WANG Peng, LIU Wei, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12993-13000.
    [21]
    TONG Zan-jia, CHEN Yu-hang, XU Ze-wei, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. 2023, DOI: 10.48550/arXiv.2301.10051.
    [22]
    LI Chao, ZHOU Ao-jun, YAO An-bang. Omni-dimensional dynamic convolution[J]. 2022, arXiv preprint arXiv: 2209.07947.
    [23]
    WANG Qi-long, WU Bang-gu, ZHU Peng-fei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 11534-11542.
    [24]
    HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and- excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. doi: 10.1109/TPAMI.2019.2913372
    [25]
    HE Tong, ZHANG Zhi, ZHANG Hang, et al. Bag of tricks for image classification with convolutional neural networks[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 558-567.
    [26]
    ZHU Xi-zhou, SU Wei-jie, LU Le-wei, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. 2020, DOI: 10.48550/arXiv.2010.04159.
    [27]
    ZHANG Hao, LI Feng, LIU Shi-long, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[J]. 2022, DOI: 10.48550/arXiv.2203.03605.
    [28]
    XONG Chen-qi, ZATED T, ABDELKADER E M. A novel YOLO v8-GAM-Wise-IoU model for automated detection of bridge surface cracks[J]. Construction and Building Materials, 2024, 414: 135025. doi: 10.1016/j.conbuildmat.2024.135025
    [29]
    HANG Die, YANG Jian-xi, JIANG Shi-xin, et al. Lightweight mesh crack detection algorithm based on efficient attention mechanism[J]. International Journal of Robotics and Automation, 2023, 38(3): 170-179.
    [30]
    ZHANG T Y, SUEN C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 1984, 27(3): 236-239. doi: 10.1145/357994.358023
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (76) PDF downloads(7) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return