Citation: | JIANG Shi-xin, ZOU Xiao-xue, YANG Jian-xi, LI Hao, HUANG Xue-mei, LI Ren, ZHANG Ting-ping, LIU Xin-long, WANG Di. Concrete bridge crack detection method based on improved YOLO v8s in complex backgrounds[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 135-147. doi: 10.19818/j.cnki.1671-1637.2024.06.009 |
[1] |
陈浩瀚. 混凝土路面图像的裂缝检测算法研究[D]. 东莞: 东莞理工学院, 2023.
CHEN Hao-han. Research on crack detection algorithm of concrete pavement images[D]. Dongguan: Dongguan University of Technology, 2023. (in Chinese)
|
[2] |
邓露, 褚鸿鹄, 龙砺芝, 等. 基于深度学习的土木基础设施裂缝检测综述[J]. 中国公路学报, 2023, 36(2): 1-21. doi: 10.3969/j.issn.1001-7372.2023.02.001
DENG Lu, CHU Hong-hu, LONG Li-zhi, et al. Review of deep learning-based crack detection for civil infrastructure[J]. China Journal of Highways and Transport, 2023, 36(2): 1-21. (in Chinese) doi: 10.3969/j.issn.1001-7372.2023.02.001
|
[3] |
《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(2): 1-97. doi: 10.3969/j.issn.1001-7372.2021.02.002
Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2021[J]. China Journal of Highway and Transport, 2021, 34(2): 1-97. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.02.002
|
[4] |
HSIEH Y A, TSAI Y J. Machine learning for crack detection: review and model performance comparison[J]. Journal of Computing in Civil Engineering, 2020, 34(5): 04020038. doi: 10.1061/(ASCE)CP.1943-5487.0000918
|
[5] |
刘宇飞, 樊健生, 聂建国, 等. 结构表面裂缝数字图像法识别研究综述与前景展望[J]. 土木工程学报, 2021, 54(6): 79-98.
LIU Yu-fei, FAN Jian-sheng, NIE Jian-guo, et al. Review and prospect of digital-image-based crack detection of structure surface[J]. China Civil Engineering Journal, 2021, 54(6): 79-98. (in Chinese)
|
[6] |
MUNAWAR H S, HAMMAD A W A, HADDAD A, et al. Image-based crack detection methods: a review[J]. Infrastructures, 2021, 6(8): 115. doi: 10.3390/infrastructures6080115
|
[7] |
LECUN Y L, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
|
[8] |
沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. doi: 10.3969/j.issn.1001-7372.2018.01.001
SHA Ai-min, TONG Zheng, GAO Jie. Recognition and measurement of pavement diseases based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10. (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.01.001
|
[9] |
DENG Li, CHU Han-han, SHI Peng, et al. Region-based CNN method with deformable modules for visually classifying concrete cracks[J]. Applied Sciences, 2020, 10(7): 2528. doi: 10.3390/app10072528
|
[10] |
晏班夫, 徐观亚, 栾健, 等. 基于Faster R-CNN与形态法的路面病害识别[J]. 中国公路学报, 2021, 34(9): 181-193. doi: 10.3969/j.issn.1001-7372.2021.09.015
YAN Ban-fu, XU Guan-ya, LUAN Jian, et al. Pavement distress detection based on faster R-CNN and morphological operations[J]. China Journal of Highway and Transport, 2021, 34(9): 181-193. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.09.015
|
[11] |
余加勇, 李锋, 薛现凯, 等. 基于无人机及Mask R-CNN的桥梁结构裂缝智能识别[J]. 中国公路学报, 2021, 34(12): 80-90. doi: 10.3969/j.issn.1001-7372.2021.12.007
YU Jia-yong, LI Feng, XUE Xian-kai, et al. Intelligent identification of bridge structure cracks based on unmanned aerial vehicle and mask R-CNN[J]. China Journal of Highway and Transport, 2021, 34(12): 80-90. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.12.007
|
[12] |
REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
[13] |
LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multi-box detector[C]//Springer. Proceedings of the 2016 European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
|
[14] |
REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. 2018, DOI:
|
[15] |
彭雨诺, 刘敏, 万智, 等. 基于改进YOLO的双网络桥梁表观病害快速检测算法[J]. 自动化学报, 2022, 48(4): 1018-1032.
PENG Yu-nuo, LIU Min, WAN Zhi, et al. A dual deep network based on the improved YOLO for fast bridge surface defect detection[J]. Acta Automatica Sinica, 2022, 48(4): 1018-1032. (in Chinese)
|
[16] |
HUSSAIN M. YOLO-v1 to YOLO-v8, the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J]. Machines, 2023, 11(7): 677. doi: 10.3390/machines11070677
|
[17] |
SWATHI Y, CHALLA M. YOLO v8: advancements and innovations in object detection[C]//Springer. International Conference on Smart Computing and Communication. Berlin: Springer, 2024: 1-13.
|
[18] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. 2020, DOI:
|
[19] |
ZHENG Zhao-hui, WANG Ping, REN Dong-wei, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586. doi: 10.1109/TCYB.2021.3095305
|
[20] |
ZHENG Zhao-hui, WANG Peng, LIU Wei, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//AAAI. Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12993-13000.
|
[21] |
TONG Zan-jia, CHEN Yu-hang, XU Ze-wei, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. 2023, DOI:
|
[22] |
LI Chao, ZHOU Ao-jun, YAO An-bang. Omni-dimensional dynamic convolution[J]. 2022, arXiv preprint arXiv: 2209.07947.
|
[23] |
WANG Qi-long, WU Bang-gu, ZHU Peng-fei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 11534-11542.
|
[24] |
HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and- excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. doi: 10.1109/TPAMI.2019.2913372
|
[25] |
HE Tong, ZHANG Zhi, ZHANG Hang, et al. Bag of tricks for image classification with convolutional neural networks[C]//IEEE. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 558-567.
|
[26] |
ZHU Xi-zhou, SU Wei-jie, LU Le-wei, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. 2020, DOI:
|
[27] |
ZHANG Hao, LI Feng, LIU Shi-long, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[J]. 2022, DOI:
|
[28] |
XONG Chen-qi, ZATED T, ABDELKADER E M. A novel YOLO v8-GAM-Wise-IoU model for automated detection of bridge surface cracks[J]. Construction and Building Materials, 2024, 414: 135025. doi: 10.1016/j.conbuildmat.2024.135025
|
[29] |
HANG Die, YANG Jian-xi, JIANG Shi-xin, et al. Lightweight mesh crack detection algorithm based on efficient attention mechanism[J]. International Journal of Robotics and Automation, 2023, 38(3): 170-179.
|
[30] |
ZHANG T Y, SUEN C Y. A fast parallel algorithm for thinning digital patterns[J]. Communications of the ACM, 1984, 27(3): 236-239. doi: 10.1145/357994.358023
|