Citation: | ZHU Xu, ZHANG Lin-hu, YAN Mao-de. System design of heterogeneous vehicle platoon based on multi-delay proportional-retarded controller[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 230-242. doi: 10.19818/j.cnki.1671-1637.2024.06.016 |
[1] |
AXELSSON J. Safety in vehicle platooning: a systematic literature review[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(5): 1030-1045. http://www.onacademic.com/detail/journal_1000039518078610_0d6f.html
|
[2] |
OLIVEIRA R, MONTEZ C, BOUKERCHE A, et al. Co-design of consensus-based approach and reliable communication protocol for vehicular platoon control[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9510-9524. doi: 10.1109/TVT.2021.3101489
|
[3] |
边有钢, 杨依琳, 胡满江, 等. 基于双向多车跟随式拓扑的混合车辆队列稳定性研究[J]. 中国公路学报, 2022, 35(3): 66-77. doi: 10.3969/j.issn.1001-7372.2022.03.007
BIAN You-gang, YANG Yi-lin, HU Man-jiang, et al. Study on the stability of mixed vehicular platoon based on bidirectional multiple-vehicle following topologies[J]. China Journal of Highway and Transport, 2022, 35(3): 66-77. (in Chinese) doi: 10.3969/j.issn.1001-7372.2022.03.007
|
[4] |
ZHENG Yang, BIAN You-gang, LI S E, et al. Cooperative control of heterogeneous connected vehicles with directed acyclic interactions[J]. IEEE Intelligent Transportation Systems Magazine, 2021, 13(2): 127-141. doi: 10.1109/MITS.2018.2889654
|
[5] |
PAN Cheng-wei, CHEN Yong, LIU Yue-zhi, et al. String stability for heterogeneous vehicular platoon with fault[C]//IEEE. 2021 IEEE International Intelligent Transportation Systems Conference. New York: IEEE, 2021: 1913-1918.
|
[6] |
LI Yong-fu, TANG Chuan-cong, LI Ke-zhi, et al. Consensus-based cooperative control for multi-platoon under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2220-2229. doi: 10.1109/TITS.2018.2865575
|
[7] |
YU Xin-yi, YANG Fan, ZOU Chao, et al. Stabilization parametric region of distributed PID controllers for general first-order multi-agent systems with time delay[J]. IEEE Journal of Automatica Sinica, 2019, 7(6): 1555-1564.
|
[8] |
MA Guo-qi, WANG Bin-quan, GE S S. Robust optimal control of connected and automated vehicle platoons through improved particle swarm optimization[J]. Transportation Research Part C: Emerging Technologies, 2022, 135: 1-15. http://www.sciencedirect.com/science/article/pii/S0968090X21004745?dgcid=rss_sd_all
|
[9] |
IBRAHIM A, GOSWAMI D, LI Hong, et al. Multi-layer multi-rate model predictive control for vehicle platooning[J]. IEEE Transportation Research Part C: Emerging Technologies, 2021, 10(2): 583-607. http://www.sciencedirect.com/science/article/pii/S0968090X20308056
|
[10] |
GONG Si-yuan, ZHOU An-ye, PEETA S. Cooperative adaptive cruise control for a platoon of connected and autonomous vehicles considering dynamic information flow topology[J]. Transportation Research Record, 2019, 2673(10): 185-198. doi: 10.1177/0361198119847473
|
[11] |
RAMÍREZ A, SIPAHI R. Multiple intentional delays can facilitate fast consensus and noise reduction in a multiagent system[J]. IEEE Transactions on Cybernetics, 2018, 49(4): 1224-1235. http://www.onacademic.com/detail/journal_1000040204394710_454d.html
|
[12] |
RAMÍREZ A, GARRIDO R, SIPAHI R, et al. Design of proportional integral retarded (PIR) controllers for second-order LTI systems[J]. IEEE Transactions on Automatic Control, 2016, 32(6): 1688-1693. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7265026
|
[13] |
常雪阳, 徐庆, 李克强, 等. 通信时延与丢包下智能网联汽车控制性能分析[J]. 中国公路学报, 2019, 32(6): 216-225.
CHANG Xue-yang, XU Qing, LI Ke-qiang, et al. Analysis of intelligent and connected vehicle control under communication delay and packet loss[J]. China Journal of Highway and Transport, 2019, 32(6): 216-225. (in Chinese)
|
[14] |
DARBHA S, KONDURI S, PAGILLA P R, et al. Benefits of V2V communication for autonomous and connected vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(5): 1-10. http://www.researchgate.net/profile/Prabhakar_Pagilla/publication/323655121_Benefits_of_V2V_Communication_for_Autonomous_and_Connected_Vehicles/links/5aa83e2da6fdcc1b59c63a90/Benefits-of-V2V-Communication-for-Autonomous-and-Connected-Vehicles.pdf
|
[15] |
LIU Yong-gui, GAO Huan-li. Stability, scalability, speedability, and string stability of connected vehicle systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(5): 2819-2832. doi: 10.1109/TSMC.2021.3054794
|
[16] |
LI S E, QIN Xiao-hui, ZHENG Yang, et al. Distributed platoon control under topologies with complex eigenvalues: stability analysis and controller synthesis[J]. IEEE Transactions on Control Systems Technology, 2019, 27(1): 206-220. doi: 10.1109/TCST.2017.2768041
|
[17] |
OLIVEIRA S F, TORRES L A, MOZELLI L A, et al. Stability and formation error of homogeneous vehicular platoons with communication time delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(10): 4338-4349. doi: 10.1109/TITS.2019.2939777
|
[18] |
李永福, 何昌鹏, 朱浩, 等. 通信延时环境下异质网联车辆队列非线性纵向控制[J]. 自动化学报, 2021, 47(12): 2841-2856.
LI Yong-fu, HE Chang-peng, ZHU Hao, et al. Nonlinear longitudinal control for heterogeneous connected vehicle platoon in the presence of communication delay[J]. Acta Automatica Sinica, 2021, 47(12): 2841-2856. (in Chinese)
|
[19] |
FIENGO G, LUI D G, PETRILLO A, et al. Distributed leader-tracking adaptive control for high-order nonlinear Lipschitz multi-agent systems with multiple time-varying communication delays[J]. IEEE International Journal of Control, 2021, 94(7): 1880-1892. doi: 10.1080/00207179.2019.1683608
|
[20] |
XING Hai-tao, PLOEG J, NIJMEIJER H. Robust CACC in the presence of uncertain delays[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 3507-3518. doi: 10.1109/TVT.2022.3148119
|
[21] |
LIU Yong-gui, GAO Huan-li, ZHAI Chun-jie, et al. Internal stability and string stability of connected vehicle systems with time delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(10): 6162-6174. doi: 10.1109/TITS.2020.2988401
|
[22] |
GUO Ge, KANG Jian, LEI Hong-bo, et al. Finite-time stabilization of a collection of connected vehicles subject to communication interruptions[J]. IEEE Transactions on Intelligent Transportation, 2021, 20(4): 101-109.
|
[23] |
KHALIFA A, KERMORGANT O, DOMINGUEZ S, et al. Platooning of car-like vehicles in urban environments: an observer-based approach considering actuator dynamics and time delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(9): 5684-5696. doi: 10.1109/TITS.2020.2988948
|
[24] |
李旭光, 张颖伟, 冯琳, 等. 时滞系统的完全稳定性研究综述[J]. 控制与决策, 2018, 33(7): 1153-1170.
LI Xu-guang, ZHANG Ying-wei, FENG Lin, et al. A survey on the complete stability of time-delay systems[J]. Journal of Control and Decision, 2018, 33(7): 1153-1170. (in Chinese)
|
[25] |
RAMÍREZ A, SIPAHI R. Single-delay and multiple-delay proportional-retarded (PR) protocols for fast consensus in a large-scale network[J]. IEEE Transactions on Automatic Control, 2018, 64(5): 2142-2149.
|
[26] |
PLOEG J N, VAN D, NIJMEIJER H. Lp string stability of cascaded systems: application to vehicle platooning[J]. IEEE Transactions on Control Systems Technology, 2014, 22(2): 786-793. doi: 10.1109/TCST.2013.2258346
|
[27] |
ODERSKY M, BLANVILLAIN O, LIU Feng-yun, et al. Simplicitly: foundations and applications of implicit function types[J]. Proceedings of the ACM on Programming Languages, 2017, 42(2): 1-29. http://www.onacademic.com/detail/journal_1000040900916410_3023.html
|
[28] |
PALIOKAS E. Multidimensional analogues of the Riemann-Hilbert boundary value problem[J]. Mathematical Modelling and Analysis, 2007, 12(2): 205-214. doi: 10.3846/1392-6292.2007.12.205-214
|
[29] |
FU Pei-lin, NICULESCU S I, CHEN Jie. Stability of linear neutral time-delay systems: exact conditions via matrix pencil solutions[J]. IEEE Transactions on Automatic Control, 2006, 51(6): 1063-1069. doi: 10.1109/TAC.2006.876804
|