Citation: | LIU Chang, CAO Lu-fang, YANG Yu-lu, LIN Bin, ZHANG Shi-ze. Ship trajectory compression method based on time ratio-speed-heading[J]. Journal of Traffic and Transportation Engineering, 2025, 25(1): 172-183. doi: 10.19818/j.cnki.1671-1637.2025.01.012 |
[1] |
ROBARDS M D, SILBER G K, ADAMS J D, et al. Conservation science and policy applications of the marine vessel automatic identification system (AIS)—a review[J]. Bulletin of Marine Science, 2016, 92(1): 75-103.
|
[2] |
CHENG Liang, YAN Zhao-jin, XIAO Yi-jia, et al. Using big data to track marine oil transportation along the 21st-century Maritime Silk Road[J]. Science China Technological Sciences, 2019, 62(4): 677-686. doi: 10.1007/s11431-018-9335-1
|
[3] |
ZHOU Zheng, ZHANG Ying-jian, YUAN Xiao-yu, et al. Compressing AIS trajectory data based on the multi-objective peak Douglas-Peucker algorithm[J]. IEEE Access, 2023, 11: 6802-6821. doi: 10.1109/ACCESS.2023.3234121
|
[4] |
TANG Chun-hua, WANG Han, ZHAO Jia-huan, et al. A method for compressing AIS trajectory data based on the adaptive-threshold Douglas-Peucker algorithm[J]. Ocean Engineering, 2021, 232: 109041. doi: 10.1016/j.oceaneng.2021.109041
|
[5] |
FERREIRA M D, CAMPBELL J, PURNEY E, et al. Assessing compression algorithms to improve the efficiency of clustering analysis on AIS vessel trajectories[J]. International Journal of Geographical Information Science, 2023, 37(3): 660-683. doi: 10.1080/13658816.2022.2163494
|
[6] |
HUANG Yu, LI Yan, ZHANG Zhao-feng, et al. GPU- accelerated compression and visualization of large-scale vessel trajectories in maritime IoT industries[J]. IEEE Internet of Things Journal, 2020, 7(11): 10794-10812.
|
[7] |
ZHANG Shu-kai, SHI Guo-you, LIU Zheng-jiang, et al. Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity[J]. Ocean Engineering, 2018, 155: 240-250.
|
[8] |
RONG H, TEIXEIRA A P, GUEDES SOARES C. Data mining approach to shipping route characterization and anomaly detection based on AIS data[J]. Ocean Engineering, 2020, 198: 106936. doi: 10.1016/j.oceaneng.2020.106936
|
[9] |
YAN Zhao-jin, HE Rong, RUAN Xiao-guang, et al. Footprints of fishing vessels in Chinese waters based on automatic identification system data[J]. Journal of Sea Research, 2022, 187: 102255. doi: 10.1016/j.seares.2022.102255
|
[10] |
WANG Si-wen, LI Ying, XING Hu. A novel method for ship trajectory prediction in complex scenarios based on spatio-temporal features extraction of AIS data[J]. Ocean Engineering, 2023, 281: 114846. doi: 10.1016/j.oceaneng.2023.114846
|
[11] |
LEICHSENRING Y E, BALDO F. An evaluation of compression algorithms applied to moving object trajectories[J]. International Journal of Geographical Information Science, 2020, 34(3): 539-558. doi: 10.1080/13658816.2019.1676430
|
[12] |
GAO Miao, SHI Guo-you, LI Wei-feng. Online compression algorithm of AIS trajectory data based on improved sliding window[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 218-227. doi: 10.3969/j.issn.1671-1637.2018.03.023
|
[13] |
ZHONG Yan-ling, KONG Jin-ling, ZHANG Ju-qing, et al. A trajectory data compression algorithm based on spatio-temporal characteristics[J]. PeerJ Computer Science, 2022, 8: e1112. doi: 10.7717/peerj-cs.1112
|
[14] |
ZHU Fei-xiang, MA Zhi-hong. Ship trajectory online compression algorithm considering handling patterns[J]. IEEE Access, 2021, 9: 70182-70191. doi: 10.1109/ACCESS.2021.3078642
|
[15] |
DOUGLASD H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica: The International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112-122. doi: 10.3138/FM57-6770-U75U-7727
|
[16] |
ZHAO Liang-bin, SHI Guo-you. A trajectory clustering method based on Douglas-Peucker compression and density for marine traffic pattern recognition[J]. Ocean Engineering, 2019, 172: 456-467. doi: 10.1016/j.oceaneng.2018.12.019
|
[17] |
ZHANG Shu-kai, LIU Zheng-jiang, CAI Yao, et al. AIS trajectories simplification and threshold determination[J]. Journal of Navigation, 2016, 69(4): 729-744.
|
[18] |
ZHAO Liang-bin, SHI Guo-you. A method for simplifying ship trajectory based on improved Douglas-Peucker algorithm[J]. Ocean Engineering, 2018, 166: 37-46.
|
[19] |
LIU Jing-xian, Li Huan-huan, YANG Zai-li, et al. Adaptive Douglas-Peucker algorithm with automatic thresholding for AIS-based vessel trajectory compression[J]. IEEE Access, 2019, 7: 150677-150692.
|
[20] |
WEI Zhao-kun, XIE Xin-lian, ZHANG Xiao-ju. AIS trajectory simplification algorithm considering ship behaviours[J]. Ocean Engineering, 2020, 216: 108086.
|
[21] |
LIU Hai-yan, GUO Xuan, LIU Jun-nan. A vessel trajectory data compression method combining spatio-temporal and semantic features[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1974-1982.
|
[22] |
MA Jie, HE Mu-rong, JIA Cheng-feng, et al. Semantic representation of ship behavior based on context autoencoder[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 334-347. doi: 10.19818/j.cnki.1671-1637.2022.04.026
|
[23] |
YAN Zhao-jin, XIAO Yi-jia, CHENG Liang, et al. Exploring AIS data for intelligent maritime routes extraction[J]. Applied Ocean Research, 2020, 101: 102271.
|
[24] |
ZHANG Ming-yang, KUJALA P, MUSHARRAF M, et al. A machine learning method for the prediction of ship motion trajectories in real operational conditions[J]. Ocean Engineering, 2023, 283: 114905.
|
[25] |
MERATNIA N, DE BY R A. Spatiotemporal compression techniques for moving point objects[C]//Springer. Advance in Database Technology—EDBT 2004. Berlin: Springer, 2004: 765-782.
|
[26] |
HANSUDDHISUNTORN K, HORANONT T. Improvement of TD-TR algorithm for simplifying GPS trajectory data[C]//IEEE. 2019 First International Conference on Smart Technology and Urban Development. New York: IEEE, 2019: 11-16.
|
[27] |
LIU Chang, ZHANG Shi-ze, LI Bei-ying, et al. Typical ship trajectory extraction method considering ground speed and heading[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 114-123.
|
[28] |
LIN Xue-lian, MA Shuai, JIANG Jia-hao, et al. Error bounded line simplification algorithms for trajectory compression: an experimental evaluation[J]. ACM Transactions on Database Systems, 2021, 46(3): 11.
|
[29] |
YANG Jia-xuan, LIU Yuan, MA Ling-qi, et al. Maritime traffic flow clustering analysis by density based trajectory clustering with noise[J]. Ocean Engineering, 2022, 249: 111001.
|
[30] |
LIU Chang, ZHANG Shi-ze, CAO Lu-fang, et al. The identification of ship trajectories using multi-attribute compression and similarity metrics[J]. Journal of Marine Science and Engineering, 2023, 11(10): 2005.
|