| Citation: | MENG Qing-ling, DUAN Hao-chen, WANG Bao-lin, GUO Xiao-yu, WANG Hai-liang, ZHANG He. Moisture diffusion law of cracked HDPE sheath for bridge cables under alternating action of ultraviolet and fatigue loads[J]. Journal of Traffic and Transportation Engineering, 2025, 25(2): 235-251. doi: 10.19818/j.cnki.1671-1637.2025.02.015 |
| [1] |
LI H, OU J P. The state of the art in structural health monitoring of cable-stayed bridges[J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 43-67. doi: 10.1007/s13349-015-0115-x
|
| [2] |
DAN D H, CHENG W, SUN L M, et al. Fatigue durability study of high density polyethylene stay cable sheathing[J]. Construction and Building Materials, 2016, 111: 474-481. doi: 10.1016/j.conbuildmat.2016.02.109
|
| [3] |
CHEN Z H, CHEN H Y, LIU H B, et al. Corrosion behavior of different cables of large-span building structures in different environments[J]. Journal of Materials in Civil Engineering, 2020, 32(11): 04020345. doi: 10.1061/(ASCE)MT.1943-5533.0003428
|
| [4] |
WANG X X, CHEN Z H, LIU H B, et al. Experimental study on stress relaxation properties of structural cables[J]. Construction and Building Materials, 2018, 175: 777-789. doi: 10.1016/j.conbuildmat.2018.04.224
|
| [5] |
MORGADO T L M, SOUSA E BRITO A. A failure analysis study of a prestressed steel cable of a suspension bridge[J]. Case Studies in Construction Materials, 2015, 3: 40-47. doi: 10.1016/j.cscm.2015.04.001
|
| [6] |
FURUYA K, KITAGAWA M, NAKAMURA S, et al. Corrosion mechanism and protection methods for suspension bridge cables[J]. Structural Engineering International, 2000, 10(3): 189-193. doi: 10.2749/101686600780481518
|
| [7] |
HAMILTON H R, BREEN J E, FRANK K H. Bridge stay cable corrosion protection. Ⅱ: accelerated corrosion tests[J]. Journal of Bridge Engineering, 1998, 3(2): 72-81. doi: 10.1061/(ASCE)1084-0702(1998)3:2(72)
|
| [8] |
MALJAARS J, VROUWENVELDER T. Fatigue failure analysis of stay cables with initial defects: Ewijk bridge case study[J]. Structural Safety, 2014, 51: 47-56. doi: 10.1016/j.strusafe.2014.05.007
|
| [9] |
DAN D H, SUN L M, GUO Y H, et al. Study on the mechanical properties of stay cable HDPE sheathing fatigue in dynamic bridge environments[J]. Polymers, 2015, 7(8): 1564-1576. doi: 10.3390/polym7081470
|
| [10] |
FAN Z Y, YE Q W, XU X, et al. Fatigue reliability-based replacement strategy for bridge stay cables: a case study in China[J]. Structures, 2022, 39: 1176-1188. doi: 10.1016/j.istruc.2022.03.093
|
| [11] |
CARRASCO F, PAGÈS P, PASCUAL S, et al. Artificial aging of high-density polyethylene by ultraviolet irradiation[J]. European Polymer Journal, 2001, 37(7): 1457-1464. doi: 10.1016/S0014-3057(00)00251-2
|
| [12] |
LI Y L, LIU W L, REN X C. Critical stress of high-density polyethylene during stress and photo-oxidative aging[J]. Polymer Engineering & Science, 2015, 55(10): 2277-2284.
|
| [13] |
GONG Y, WANG S H, ZHANG Z Y, et al. Degradation of sunlight exposure on the high-density polyethylene (HDPE) pipes for transportation of natural gases[J]. Polymer Degradation and Stability, 2021, 194: 109752. doi: 10.1016/j.polymdegradstab.2021.109752
|
| [14] |
RODRIGUEZ A K, MANSOOR B, AYOUB G, et al. Effect of UV-aging on the mechanical and fracture behavior of low density polyethylene[J]. Polymer Degradation and Stability, 2020, 180: 109185. doi: 10.1016/j.polymdegradstab.2020.109185
|
| [15] |
GRIGORIADOU I, PARASKEVOPOULOS K M, CHRISSAFIS K, et al. Effect of different nanoparticles on HDPE UV stability[J]. Polymer Degradation and Stability, 2011, 96(1): 151-163. doi: 10.1016/j.polymdegradstab.2010.10.001
|
| [16] |
QI Z P, HU N, ZENG D, et al. Failure of high density polyethylene under cyclic loading: mechanism analysis and mode prediction[J]. International Journal of Mechanical Sciences, 2019, 156: 46-58. doi: 10.1016/j.ijmecsci.2019.03.021
|
| [17] |
DJEBLI A, BENDOUBA M, AID A, et al. Experimental analysis and damage modeling of high-density polyethylene under fatigue loading[J]. Acta Mechanica Solida Sinica, 2016, 29(2): 133-144. doi: 10.1016/S0894-9166(16)30102-1
|
| [18] |
HUANG Z Y, LI Y L, REN X C. Comparing cracking time and structure changes of different high-density polyethylenes during stress and photo-oxidative aging[J]. Journal of Applied Polymer Science, 2014, 131(20): 40904. doi: 10.1002/app.40904
|
| [19] |
WEE J W, CHOI B H. Prediction of discontinuous fatigue crack growth in high density polyethylene based on the crack layer theory with variable crack layer parameters[J]. International Journal of Fatigue, 2016, 92: 304-312. doi: 10.1016/j.ijfatigue.2016.07.017
|
| [20] |
QI Z P, HU N, LI Z A, et al. A stress-based model for fatigue life prediction of high density polyethylene under complicated loading conditions[J]. International Journal of Fatigue, 2019, 119: 281-289. doi: 10.1016/j.ijfatigue.2018.10.007
|
| [21] |
ALMOMANI A, MOURAD A H I, DEVECI S. Effect of the crack layer theory parameters on the discontinuous slow crack growth of high density polyethylene under fatigue loading[J]. International Journal of Solids and Structures, 2024, 286/287: 112579. doi: 10.1016/j.ijsolstr.2023.112579
|
| [22] |
WEE J W, KIM I, CHOI M S, et al. Characterization and modeling of slow crack growth behaviors of defective high-density polyethylene pipes using stiff-constant K specimen[J]. Polymer Testing, 2020, 86: 106499. doi: 10.1016/j.polymertesting.2020.106499
|
| [23] |
PINTER G, HAAGER M, BALIKA W, et al. Cyclic crack growth tests with CRB specimens for the evaluation of the long-term performance of PE pipe grades[J]. Polymer Testing, 2007, 26(2): 180-188. doi: 10.1016/j.polymertesting.2006.09.010
|
| [24] |
AKHAVAN A, SHAFAATIAN S M H, RAJABIPOUR F. Quantifying the effects of crack width, tortuosity, and roughness on water permeability of cracked mortars[J]. Cement and Concrete Research, 2012, 42(2): 313-320. doi: 10.1016/j.cemconres.2011.10.002
|
| [25] |
FRANCHINI M, LANZA L. Leakages in pipes: generalizing Torricelli's equation to deal with different elastic materials, diameters and orifice shape and dimensions[J]. Urban Water Journal, 2014, 11(8): 678-695. doi: 10.1080/1573062X.2013.868496
|
| [26] |
ALI SADR-AL-SADATI S, JALILI GHAZIZADEH M. The experimental and numerical study of water leakage from High-Density Polyethylene pipes at elevated temperatures[J]. Polymer Testing, 2019, 74: 274-280. doi: 10.1016/j.polymertesting.2019.01.014
|
| [27] |
PARK S S, KWON S J, JUNG S H. Analysis technique for chloride penetration in cracked concrete using equivalent diffusion and permeation[J]. Construction and Building Materials, 2012, 29: 183-192. doi: 10.1016/j.conbuildmat.2011.09.019
|
| [28] |
JANG S Y, KIM B S, OH B H. Effect of crack width on chloride diffusion coefficients of concrete by steady-state migration tests[J]. Cement and Concrete Research, 2011, 41(1): 9-19. doi: 10.1016/j.cemconres.2010.08.018
|
| [29] |
GUO R, LI C G, XIAN G J. Water absorption and long-term thermal and mechanical properties of carbon/glass hybrid rod for bridge cable[J]. Engineering Structures, 2023, 274: 115176. doi: 10.1016/j.engstruct.2022.115176
|
| [30] |
DE MIRANDA S, MOLARI L, SCALET G, et al. Simple beam model to estimate leakage in longitudinally cracked pressurized pipes[J]. Journal of Structural Engineering, 2012, 138(8): 1065-1074. doi: 10.1061/(ASCE)ST.1943-541X.0000535
|
| [31] |
LI D S, OU J P, LAN C M, et al. Monitoring and failure analysis of corroded bridge cables under fatigue loading using acoustic emission sensors[J]. Sensors, 2012, 12(4): 3901-3915. doi: 10.3390/s120403901
|
| [32] |
FAN Hou-bin, TIAN Hao, CAO Su-gong, et al. Model test study of change mechanism of temperatures and humidity in main cable of suspension bridge[J]. Bridge Construction, 2017, 47(2): 42-47.
|
| [33] |
WEI Zi-jie, PENG Fu-sheng, MIAO Xiao-ping, et al. Numerical calculation and experiment on the dehumidification system for main cable of suspension bridge[J]. Journal of Engineering Thermophysics, 2016, 37(12): 2495-2501.
|
| [34] |
WANG Y, ZHENG Y Q, ZHANG W H, et al. Analysis on damage evolution and corrosion fatigue performance of high-strength steel wire for bridge cable: experiments and numerical simulation[J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102571. doi: 10.1016/j.tafmec.2020.102571
|
| [35] |
WANG Y, ZHANG W H, PAN X, et al. Experimental study on fatigue crack propagation of high-strength steel wire with initial defects for bridge cables[J]. Applied Sciences, 2020, 10(12): 4065. doi: 10.3390/app10124065
|
| [36] |
AINALI N M, BIKIARIS D N, LAMBROPOULOU D A. Aging effects on low-and high-density polyethylene, polypropylene and polystyrene under UV irradiation: an insight into decomposition mechanism by Py-GC/MS for microplastic analysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105207. doi: 10.1016/j.jaap.2021.105207
|
| [37] |
LUO Rong, LIU Zi-yao, HUANG Ting-ting, et al. Effect of freezing-thawing cycles on water vapor diffusion in asphalt mixtures[J]. China Journal of Highway and Transport, 2018, 31(9): 20-26, 64.
|
| [38] |
LIU Zi-yao. Study of the influence factors of water vapor passing through asphalt mixtures[D]. Wuhan: Wuhan University of Technology, 2018.
|
| [39] |
HUANG Ting-ting. Investigation on mechanism of water vapor diffusion in asphalt mixtures[D]. Wuhan: Wuhan University of Technology, 2018.
|
| [40] |
MENGEL L, KRAUSS H W, LOWKE D. Water transport through cracks in plain and reinforced concrete-influencing factors and open questions[J]. Construction and Building Materials, 2020, 254: 118990. doi: 10.1016/j.conbuildmat.2020.118990
|