| Citation: | BAI Tao, AN Yi-ming, JIN Guang-lai, ZHANG Wei-guang, LIN Jie. Improved algorithm for lightweight identification of 3D GPR images of hidden road defects[J]. Journal of Traffic and Transportation Engineering, 2025, 25(4): 42-57. doi: 10.19818/j.cnki.1671-1637.2025.04.003 |
| [1] |
Ministry of Transport of China. Statistical bulletin on the development of transportation industry in 2024[N]. China Communications News, 2025-06-12(002).
|
| [2] |
HOU Fei-fei, SHI Rong-hua, LEI Wen-tai, et al. A review of target detection algorithm for GPR B-scan processing[J]. Journal of Electronics & Information Technology, 2020, 42(1): 191-200.
|
| [3] |
LI Shi-nian, WANG Xiu-rong, LIN Tian, et al. Numerical simulation of 3D ground penetrating radar based on GprMax for the road cavity[J]. The Chinese Journal of Geological Hazard and Control, 2020, 31(3): 132-138.
|
| [4] |
ZHU Hong-zhou, YANG Xu-yuan. Review of non-destructive testing techniques for internal defects in asphalt pavements[J]. Science Technology and Engineering, 2024, 24(25): 10588-10604.
|
| [5] |
LEI W T, HOU F F, XI J C, et al. Automatic hyperbola detection and fitting in GPR B-scan image[J]. Automation in Construction, 2019, 106: 102839. doi: 10.1016/j.autcon.2019.102839
|
| [6] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE. 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2014: 580-587.
|
| [7] |
GIRSHICK R. Fast R-CNN[C]//IEEE. 2015 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2015: 1440-1448.
|
| [8] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
|
| [9] |
HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//IEEE. 2017 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2017: 2980-2988.
|
| [10] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 779-788.
|
| [11] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//LEIBE B, MATA J, SEBE N, et al. Computer Vision-ECCV 2016. Berlin: Springer, 2016: 21-37.
|
| [12] |
DU Y C, PAN N, XU Z H, et al. Pavement distress detection and classification based on YOLO network[J]. International Journal of Pavement Engineering, 2021, 22(13): 1659-1672. doi: 10.1080/10298436.2020.1714047
|
| [13] |
UKHWAH E N, YUNIARNO E M, SUPRAPTO Y K. Asphalt pavement pothole detection using deep learning method based on YOLO Neural Network[C]//IEEE. 2019 International Seminar on Intelligent Technology and Its Applications. New York: IEEE, 2019: 35-40.
|
| [14] |
LIU Z, WU W X, GU X Y, et al. Application of combining YOLO models and 3D GPR images in road detection and maintenance[J]. Remote Sensing, 2021, 13(6): 1081. doi: 10.3390/rs13061081
|
| [15] |
WANG Hui-qin, YANG Fa-dong, HE Yong-qiang, et al. Detection of common underground targets in ground penetrating radar Images using the GDS-YOLOv8n model[J]. Journal of Radars, 2024, 13(6): 1170-1183.
|
| [16] |
LIU Zhen, GU Xing-yu, LI Jun, et al. Deep learning-enhanced numerical simulation of ground penetrating radar and image detection of road cracks[J]. Chinese Journal of Geophysics, 2024, 67(6): 2455-2471.
|
| [17] |
HOU F F, LIU X, FAN X Y, et al. DL-aided underground cavity morphology recognition based on 3D GPR data[J]. Mathematics, 2022, 10(15): 2806. doi: 10.3390/math10152806
|
| [18] |
QIN H, ZHANG D H, TANG Y, et al. Automatic recognition of tunnel lining elements from GPR images using deep convolutional networks with data augmentation[J]. Automation in Construction, 2021, 130: 103830. doi: 10.1016/j.autcon.2021.103830
|
| [19] |
XIONG Hong-qiang. Research on object detection method and applications of ground penetrating radar based on generative adversarial networks[D]. Changchun: Jilin University, 2024.
|
| [20] |
ZHANG Jun, JIANG Wen-tao, ZHANG Yun, et al. Cement pavement void identification based on XGBoost and GPR time frequency features[J]. Journal of Tongji University (Natural Science), 2024, 52(1): 104-114, 121.
|
| [21] |
YANG L X, ZHANG R Y, LI L D, et al. SimAM: a simple, parameter-free attention module for convolutional neural networks[C]//PMLR. 38th International Conference on Machine Learning. Vancouver: PMLR, 2021: 11863-11874.
|
| [22] |
TANG Y, PERTSAU D, ZHAO D, et al. LANet: lightweight attention network for medical image segmentation[C]//MAMMADOVA G, ALIEV T, AIDA-ZADE K, et al. Communications in Computer and Information Science. Berlin: Springer, 2024: 2226.
|
| [23] |
YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recognition, 2024, 155: 110714. doi: 10.1016/j.patcog.2024.110714
|
| [24] |
GE Dao-hui, LI Hong-sheng, ZHANG Liang, et al. Survey of lightweight neural network[J]. Journal of Software, 2020, 31(9): 2627-2653.
|
| [25] |
XU Xiao-hua, ZHOU Zhang-bing, HU Zhong-xu, et al. Lightweight deep neural network models for edge intelligence: a survey[J]. Computer Science, 2024, 51(7): 257-271.
|
| [26] |
LIU Z, WANG S Q, GU X Y, et al. Non-destructive testing and intelligent evaluation of road structural conditions using GPR and FWD[J]. Journal of Traffic and Transportation Engineering (English Edition), 2025, 12(3): 462-476. doi: 10.1016/j.jtte.2023.09.006
|
| [27] |
GUAN Jin-chao, DING Ling, YANG Xu, et al. Pavement surface distress detection in complex scenarios driven by multi-dimensional image fusion[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 154-170. doi: 10.19818/j.cnki.1671-1637.2024.03.010
|
| [28] |
JIANG Shi-xin, ZOU Xiao-xue, YANG Jian-xi, et al. Concrete bridge crack detection method based on improved YOLO v8s in complex backgrounds[J]. Journal of Traffic and Transportation Engineering, 2024, 24(6): 135-147. doi: 10.19818/j.cnki.1671-1637.2024.06.009
|
| [29] |
LI Ying, FEI Yi-xuan, AN Yi-sheng, et al. Review on map matching technologies in intelligent transportation scenarios[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 301-332. doi: 10.19818/j.cnki.1671-1637.2024.05.020
|
| [30] |
YU B, WANG Y C, CHEN Q H, et al. A review of road 3D modeling based on light detection and ranging point clouds[J]. Journal of Road Engineering, 2024, 4(4): 386-398. doi: 10.1016/j.jreng.2024.04.009
|
| [31] |
YANG X, ZHANG J Q, LIU W B, et al. Automation in road distress detection, diagnosis and treatment[J]. Journal of Road Engineering, 2024, 4(1): 1-26. doi: 10.1016/j.jreng.2024.01.005
|